Biogeochemistry

, Volume 13, Issue 3, pp 199–239 | Cite as

Biogeochemistry: its origins and development

  • Eville Gorham
Article

Abstract

The history of how aspects of biology, geology and chemistry came together over the past three centuries to form a separate discipline known as biogeochemistry is described under four major headings: metabolic aspects, geochemical aspects, biogeochemical cycles, and the origin of life. A brief chronology of major conceptual advances is also presented.

Key words

biogeochemistry cycles history origins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiton W (1811) Treatise on the Origin, Qualities, and Cultivation of Moss-Earth, with Directions for Converting It Into Manure. Wilson and Paul, Air, ScotlandGoogle Scholar
  2. Anders E (1989) Prebiotic organic matter from comets and asteroids. Nature 342: 255–257Google Scholar
  3. Anonymous (1875) The organic origin of the earth's crust. Scientific American 32: 352Google Scholar
  4. Arnold JR & Libby WF (1949) Age determination by radiocarbon content; checks with samples of known age. Science 110: 678–680Google Scholar
  5. Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine, Series 5, 41: 273–276Google Scholar
  6. Arrhenius G (1952) Sediment cores from the East Pacific. Reports of the Swedish Deep Sea Expeditions, 1947–1948, vol. 5, fasc. 1, part 1, 227 ppGoogle Scholar
  7. Atwater WD (1884–1885) On the acquisition of atmospheric nitrogen by plants. American Chemical Journal 6: 365–388Google Scholar
  8. Atwater WD (1886) On the liberation of nitrogen from its compounds and the acquisition of atmospheric nitrogen by plants. American Chemical Journal 8: 398–420Google Scholar
  9. Baas Becking LGM, Kaplan IR & Moore D (1960) Limits of natural environments in terms of pH and oxidation-reduction potentials. Journal of Geology 68: 243–284Google Scholar
  10. Barrett E & Brodin G (1955) The acidity of Scandinavian precipitation. Tellus 7: 251–257Google Scholar
  11. Becker GF (1910) The age of the earth. Smithsonian Miscellaneous Collections 56(6), 28 ppGoogle Scholar
  12. Becquerel E (1868) La Lumiére. Quoted by Green JR (1909) A History of Botany 1860–1900. Clarendon Press, OxfordGoogle Scholar
  13. Beijerinck MW (1895) Über Spirillum desulfuricans als Ursache von Sulfat-reduction. Centralblatt für Bakteriologie und Parasitenkunde 1: 1–9, 49–59, 104–115Google Scholar
  14. Beijerinck MW (1901) Über oligonitrophile Mikroben. Centralblatt für Bakteriologie und Parasitenkunde II, 7: 561–582. Seen in translation by Brock 1961Google Scholar
  15. Berg K (1951) The content of limnology demonstrated by F.-A. Forel and August Thienemann on the shore of Lake Geneva. Proceedings of the International Association of Theoretical and Applied Limnology 11: 41–57Google Scholar
  16. Bergman TO (1779–1780) Opuscula Physica et Chemica. Seen in translation by Cullen E (1784). Murray, London, EnglandGoogle Scholar
  17. Berkner LV, & Marshall LC (1965) History of major atmospheric components. Proceedings of the National Academy of Science 53: 1215–1226Google Scholar
  18. Berthelot M (1860) Chimie Organique Fondée sur la Synthése. 2 volumes. Mallet-Bachelier, ParisGoogle Scholar
  19. Berthelot M (1885) Fixation directe de l'azote atmospherique libre par certains terrains argileux. Comptes Rendus de l'Académie des Sciences 101: 775–784Google Scholar
  20. Binford MW, Deevey ES & Crisman TL (1983) Paleolimnology: a historical perspective on lacustrine ecosystems. Annual Reviews of Ecology and Systematics 14: 255–286Google Scholar
  21. Birge EA (1906) Gases dissolved in the waters of Wisconsin lakes. Transactions of the American Fisheries Society 35: 143–163Google Scholar
  22. Birge EA, & Juday C (1911) The inland lakes of Wisconsin: the dissolved gases of the water and their biological significance. Bulletin of the Wisconsin Geological and Natural History Survey. Number 22, Scientific Series Number 7, 259 ppGoogle Scholar
  23. Bischof G (1854) Elements of Chemical and Physical Geology, 3 volumes. Translated by Paul BH, & Drummond J from the German edition (1847–1854). Cavendish Society, London, EnglandGoogle Scholar
  24. Bolin B & Cook R (Eds) (1983) The Major Biogeochemical Cycles and Their Interactions. Wiley, New YorkGoogle Scholar
  25. Bolin B, Rosswall T, Richey JE, Freney JR, Ivanov MV & Rodhe H (1983a) C,N,P, and S cycles: major reservoirs and fluxes. In: Bolin B & Cook RB (Eds) The Major Biogeochemical Cycles and Their Interactions (pp 41–65). Wiley, New YorkGoogle Scholar
  26. Bolin B, Crutzen PJ, Vitousek PM, Woodmansee RG, Goldberg ED & Cook RB (1983b) Interactions of biogeochemical cycles. In: Bolin & Cook RB (Eds) The Major Biogeochemical Cycles and Their Interactions (pp 1–39). Wiley, New YorkGoogle Scholar
  27. Boston PJ (1989) Gaia: a new look at global ecology and evolution. In: Singer SF (Ed) Global Climate Change, Human and Natural Influences (pp 385–400), Paragon House, New YorkGoogle Scholar
  28. Boussingault JB (1838) Recherches chimiques sur la végetation, entreprises dans le but d'examiner si les plantes prennent de l'azote à l'atmosphére. Annales de Chimie et de Physique, Series 2, 67: 5–54 and 69: 353–367Google Scholar
  29. Bowen HJM (1979) Environmental Chemistry of the Elements. Academic Press, LondonGoogle Scholar
  30. Boyle R (ca.1673) Observations and experiments on the saltness of the sea. Seen in Birch T (Ed) (1966) The Works of the Honourable Robert Boyle, vol 3 (pp 764–780). G. Olms, Hildesheim, GermanyGoogle Scholar
  31. Brock TD (Ed) (1961) Milestones in Microbiology. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  32. Brock TD & Schlegel HG (1989) Introduction. In: Schlegel HG & Bowien B (Eds) Autotrophic Bacteria (pp 1–15). Springer-Verlag, BerlinGoogle Scholar
  33. Broecker WS (1985) How to Build a Habitable Planet. Eldigio Press, Palisades, New YorkGoogle Scholar
  34. Brooke JH (1968) Wöhler's urea and its vital force?: A verdict from the chemists. Ambix 15: 84–114Google Scholar
  35. Brooks RR (1972) Geobotany and Biogeochemistry in Mineral Exploration. Harper and Row, New YorkGoogle Scholar
  36. Brown H (1954) The Challenge of Man's Future. Viking Press, New YorkGoogle Scholar
  37. Browne CA (1942) In: Moulton FR (Ed) Liebig and After Liebig. (pp 71–82). American Association for the Advancement of Science, Washington, District of ColumbiaGoogle Scholar
  38. Browne CA (1944) A source book of agricultural chemistry. Chronica Botanica 8: 1–290CrossRefPubMedGoogle Scholar
  39. Buchner E (1897) Alkoholische Gährung ohne Hefezellen. Berichte der Deutschen Chemische Gesellschaft 30: 117–124. Seen in translation by Brock (1961)Google Scholar
  40. Buffon GLL (1779) Les Époques de la Nature. See volume 5, Oeuvres Complétes de Buffon (1857). Delahays, ParisGoogle Scholar
  41. Butlin KR & Postgate JR (1954) The microbiological formation of sulphur in Cyrenaican lakes. In: Cloudsley-Thompson JL (Ed) Biology of Deserts (pp 112–122). Institute of Biology, LondonGoogle Scholar
  42. Cagniard-Latour C (1838) Mémoire sur la fermentation vineuse. Annales de Chimie et de Physique 68: 206–222. Seen in translation by Brock (1961)Google Scholar
  43. Callendar GS (1938) The artificial production of carbon dioxide and its influences on temperature. Quarterly Journal of the Royal Meteorological Society 64: 223–237Google Scholar
  44. Callendar GS (1949) Can carbon dioxide influence climate? Weather 4: 310–314Google Scholar
  45. Cavendish H (1767) Experiments on Rathbone-Place water. Philosophical Transactions of the Royal Society of London 57: 92–108Google Scholar
  46. Cess RD (1991) Positive about water feedback. Nature 349: 462–463Google Scholar
  47. Chamberlin TC (1897) A group of hypotheses bearing on climatic changes. Journal of Geology 5: 653–683Google Scholar
  48. Chamberlin TC (1898) The influence of great epochs of limestone formation upon the constitution of the atmosphere. Journal of Geology 6: 609–621Google Scholar
  49. Chamberlin TC (1899) An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. Journal of Geology 7: 545–584, 667–685, 751–787Google Scholar
  50. Chamberlin TC & Chamberlin RT (1908) Early terrestrial conditions that may have favored organic synthesis. Science 28: 897–911Google Scholar
  51. Chang S, DesMarais D, Mack R, Miller SL & Strathearn GE (1983) Prebiotic organic synthesis and the origin of life. In: Schopf JW (Ed) Earth's Earliest Biosphere: Its Origin and Evolution (pp 53–92). Princeton University PressGoogle Scholar
  52. Chyba CF, Thomas PJ, Brookshaw L & Sagan C (1990) Cometary delivery of organic molecules to the early earth. Science 249: 366–373Google Scholar
  53. Clarke FW (1908) The Data of Geochemistry. Bulletin of the U.S. Geological Survey, Number 770, 716 ppGoogle Scholar
  54. Cloud PE (1968) Atmospheric and hydrospheric evolution on the primitive earth. Science 160: 729–736Google Scholar
  55. Cloud PE (1983) Early biogeologic history: the emergency of a paradigm. In: Schopf, J.W. (Ed) Earth's Earliest Biosphere: Its Origin and Evolution (pp 14–31). Princeton University PressGoogle Scholar
  56. Cloud PE (1988) Gaia modified. Science 240: 1716Google Scholar
  57. Cloud PE (1989) Biologic evolution through the geological eons. In: Encyclopedia of Physical Science and Technology, 1989 Yearbook (pp 35–51). Academic Press, San DiegoGoogle Scholar
  58. Coffin CC, Hayes FR, Jodrey LH & Whiteway SG (1949) Exchange of materials in a lake as studied by the addition of radioactive phosphorus. Canadian Journal of Research, Series D, 27: 207–222Google Scholar
  59. Cohn FJ (1872) Über Bakterien, die Kleinsten Leben den Wesen. Seen in translation by Dolley CS (1881), published 1939. Johns Hopkins PressGoogle Scholar
  60. Collard P (1976) The Development of Microbiology. Cambridge University PressGoogle Scholar
  61. Conway EJ (1942) Mean geochemical data in relation to oceanic evolution. Proceedings of the Royal Irish Academy, Series B, 48: 119–159Google Scholar
  62. Conway EJ (1943) The chemical evolution of the ocean. Proceedings of the Royal Irish Academy, Series B, 48: 161–212Google Scholar
  63. Cowling EB (1982) A historial resumé of progress in scientific and public understanding of acid precipitation and its consequences. Environmental Science and Technology 16: 110A–123AGoogle Scholar
  64. Dampier WC (1948) A History of Science. Cambridge University PressGoogle Scholar
  65. Daniell JF (1841) On the spontaneous evolution of sulphuretted hydrogen in the waters of the western coast of Africa, and of other localities. Philosophical Magazine, Series 3, 19: 1–19Google Scholar
  66. Darwin C (1871) Letter quoted in Bernal JD (1967) The Origin of Life. Weidenfeld and Nicholson, LondonGoogle Scholar
  67. Davy H (1813) Elements of Agricultural Chemistry. Seen in third edition (1821). Longman, Hurst, Rees, Orme, and Brown, LondonGoogle Scholar
  68. Deevey ES (1970a) In defense of mud. Bulletin of the Ecological Society of America 51: 5–8Google Scholar
  69. Deevey ES (1970b) Mineral cycles. Scientific American 233: 149–158Google Scholar
  70. Deevey ES (1973) Sulfur, nitrogen, and carbon in the biosphere. In: Woodwell GM & Pecan EV (Eds) Carbon and the Biosphere (pp 182–190). U.S. Atomic Energy Commission, Technical Information Center, Office of Information Services, CONF-720510Google Scholar
  71. Degens ET (1989) Perspectives on Biogeochemistry. Springer Verlag, BerlinGoogle Scholar
  72. de la Methiére JC (1797) Theorie de la Terre, volume 4, second edition. Maradna, ParisGoogle Scholar
  73. de Saussure NT (1804) Recherches chimiques sur la végétation. Nyon, ParisGoogle Scholar
  74. Digby K (1669) A Discourse Concerning the Vegetation of Plants. Williams, LondonGoogle Scholar
  75. Drake FD (1962) Intelligent Life in Space. Macmillan, New YorkGoogle Scholar
  76. Dumas JPA (1841) On the chemical statics of organized beings. Philosophical Magazine, Series 3, 19: 337–347 and 456–469Google Scholar
  77. Dumas J & Boussingault JB (1844) The Chemical and Physical Balance of Nature. Seen in third edition, Gardner JB (Ed) Saxton and Miles, New YorkGoogle Scholar
  78. Ebermayer E (1876) Die gesamte Lehre der Waldstreu mit Rücksicht auf die chemische Statik des Waldbaues. Springer, BerlinGoogle Scholar
  79. Ehrenberg CG (1836) Vorläufige Mittheilungen über das wirkliche Vorkommen fossiler Infusorien and ihre grosse Verbreitung. Annalen der Physik and Chemie 38: 213–227Google Scholar
  80. Einsele W (1936) Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Archiv für Hydrobiologie 29: 664–686Google Scholar
  81. Forchhammer G (1965) On the composition of sea-water in the different parts of the ocean. Philosophical Transactions of the Royal Society of London 155: 203–262Google Scholar
  82. Foster RF & Rostenbach RE (1954) Distribution of radioisotopes in Columbia River. Journal of the American Waterworks Association 46: 633–640Google Scholar
  83. Fourier M (1827) Mémoire sur les températures du globe terrestre et des espaces plané-etaires. Memoires de l'Académie Royale des Sciences de l'Institute de France 7: 569–604Google Scholar
  84. Gaarder T & Gran HH (1972) Investigations of the production of Plankton in the Oslo Fjord. Rapports et Procés-Verbaux des Réunions, Conseil Permanent International pour l'Exploration de la Mer 42, 48 ppGoogle Scholar
  85. Gayon U & Dupetit G (1885) Recherches sur la réduction des nitrates par les organismes microscopiques. Annales de la Science Agronomique Francaise et Etrangere 2 (1): 226–325Google Scholar
  86. Goldberg ED (1958) The processes regulating the composition of sea water. Journal of Chemical Education 35: 116–119Google Scholar
  87. Goldberg ED (1974) The surprise factor in marine pollution studies. Marine Technology Society Journal 8: 29–34Google Scholar
  88. Goldschmidt VM (1934) Drei Vorträge über Geochemie. Geologiska Föreningens Förhandlingar 56: 385–427Google Scholar
  89. Goldschmidt VM (1934) Geochemistry (A. Muir, ed). Clarendon Press, OxfordGoogle Scholar
  90. Gorham E (1955) On the acidity and salinity of rain. Geochimica et Cosmochimica Acta 7: 231–239Google Scholar
  91. Gorham E (1957) The ionic composition of lowland lake waters from Cheshire, England. Limnology and Oceanography 2: 22–27Google Scholar
  92. Gorham E (1958) The influence and importance of daily weather conditions in the supply of chloride, sulphate, and other ions to fresh waters from atmospheric precipitation. Philosophical Transactions of the Royal Society of London, Series B, 241: 147–178Google Scholar
  93. Gorham E (1961) Factors influencing supply of major ions to inland waters, with special reference to the atmosphere. Geological Society of America Bulletin 72: 795–840Google Scholar
  94. Gorham E (1982) Robert Angus Smith, F.R.S., and “chemical climatology”. Notes and Records of the Royal Society of London 36: 267–272Google Scholar
  95. Gorham E (1989) Scientific understanding of ecosystem acidification: a historical review. Ambio 18: 150–154Google Scholar
  96. Gorham E (1990) An ecologists' guide to the problems of the 21st century. American Biology Teacher 52: 480–483Google Scholar
  97. Gorham E & Gordon AG (1960a) Some effects of the smelter pollution northeast of Falconbridge, Ontario. Canadian Journal of Botany 38: 307–312Google Scholar
  98. Gorham E & Gordon AG (1960b) The influence of smelter fumes upon the chemical composition of lake waters near Sudbury, Ontario, and upon the surrounding vegetation. Canadian Journal of Botany 38: 477–487Google Scholar
  99. Gorham E, Vitousek PM & Reiners WA (1979) The regulation of chemical budgets over the course of ecosystem succession. Annual Review of Ecology and Systematics 10: 53–84Google Scholar
  100. Guerlac H (1973) Antoine-Laurent Lavoisier. Dictionary of Scientific Biography 8: 66–91Google Scholar
  101. Haldane JBS (1929) The origin of life. The Rationalist Annual, pp 3–10Google Scholar
  102. Hales S (1727) Vegetable Staticks. Seen in third edition (1738). Innys and Manby, Woodward and Peele, London, EnglandGoogle Scholar
  103. Halley E (1687) An estimate of the quantity of vapour raised out of the sea by the warmth of the sun. Philosophical Transactions of the Royal Society of London 16: 336–370Google Scholar
  104. Halley E (1691) An account of the circulation of the watery vapours of the sea, and of the causes of springs. Philosophical Transactions of the Royal Society of London 16: 468–473Google Scholar
  105. Halley E (1694) An account of the evaporation of water. Philosophical Transactions of the Royal Society of London 18: 183–190Google Scholar
  106. Halley E (1715) A short account of the cause of the saltness of the ocean, and of the several lakes that emit no rivers; with a proposal, by help thereof, to discover the age of the world. Philosophical Transactions of the Royal Society of London 29: 296–300Google Scholar
  107. Hansen JE (1988) The greenhouse effect: impacts on current global temperature and regional heat waves. Statement to the United States Senate Committee on Energy and Natural Resources, 23 June 1988Google Scholar
  108. Hanson WC & Kornberg HA (1956) Radioactivity in terrestrial animals near an atomic energy site. Proceedings of an International Conference on the Peaceful Uses of Atomic Energy, Volume 3, pp 385–388Google Scholar
  109. Hanya T & Akiyama T (1987) The essence of sociogeochemistry. Integrated Studies in Urban Ecosystems as the Basis of Urban Planning 2: 22–31Google Scholar
  110. Hasler AD (1947) Eutrophication of lakes by domestic sewage. Ecology 28: 383–395Google Scholar
  111. Hayes FR, McCarter JA, Cameron ML & Livingstone DA (1952) On the kinetics of phosphorus exchange in lakes. Journal of Ecology 40: 202–216Google Scholar
  112. Heilbron JL (1976) Volta, Alessandro Giuseppe Antonio Anastasio. Dictionary of Scientific Biography 14: 69–82Google Scholar
  113. Hellriegel H & Wilfarth H (1888) Untersuchungen über die Stickstoffernährung der Gramineen und Leguminosen. Supplementary issue, Zeitschrift des Vereins für die Rübenzuckerindustrie. Kayssler, BerlinGoogle Scholar
  114. Henderson LJ (1913) The Fitness of the Environment: An Inquiry into the Biological Significance of the Properties of Matter. Macmillan, New YorkGoogle Scholar
  115. Henderson-Sellers A (1990) Modelling and monitoring “greenhouse” warming. Trends in Ecology and Evolution 5: 270–275Google Scholar
  116. Herbertson AJ (1913) The higher units: a geographical essay: Scientia 14: 199–212. Seen reprinted in Geography 50: 332–342 (1965)Google Scholar
  117. Hern WM (1990) Why are there so many of us? Description of a planetary ecopathological process. Population and Environment 12: 9–39Google Scholar
  118. Hilgard EW (1921) Soils, Their Formation, Properties, Composition, and Relations to Climate and Plant Growth. Macmillan, LondonGoogle Scholar
  119. Hill R (1939) Oxygen produced by isolated chloroplasts. Proceedings of the Royal Society of London, Series B, 127: 192–210Google Scholar
  120. Hitchock DR & Wechsler AE (1972) Biological cycling of atmospheric trace gases. Final Report (NASA-CR-126663) to the National Aeronautic and Space Administration, prepared by Arthur D. Little, Inc., Cambridge, MassachusettsGoogle Scholar
  121. Hitchcock DR & Lovelock JE (1967) Life detection by atmospheric analysis. Icarus 7: 149–159Google Scholar
  122. Hoff HE (1964) Nicolaus of Cusa, van Helmont, and Boyle: the first experiment of the Renaissance in quantitative biology and medicine. Journal of the History of Medicine and Allied Sciences 19: 99–117Google Scholar
  123. Home F (1757) The Principles of Agriculture and Vegetation. Hamilton and Balfour, EdinburghGoogle Scholar
  124. Hooke R (1687) An account of several curious observations and experiments concerning the growth of trees. Philosophical Transactions of the Royal Society of London 16: 307–313Google Scholar
  125. Hooke R (1705) The Posthumous Works of Robert Hooke. Seen in reissue with a new introduction by R.S. Westfall (1969). Johnson Reprint Corporation, New YorkGoogle Scholar
  126. Hoppe-Seyler F (1895) Über die Verteilung absorbierter Gase im Wasser des Bodensees und ihre Beziehung zu den in ihm lebenden Tiere und Pflanzen. Schriften des Vereins für Geschichte des Bodensees und Seiner Umgebung 24: 29–48Google Scholar
  127. Houghton H (1955) On the chemical composition of fog and cloud water. Journal of Meteorology 12: 355–357Google Scholar
  128. Hunt JM (1972) Distribution of carbon in crust of earth. Bulletin of the American Association of Petroleum Geologists 56: 2273–2277Google Scholar
  129. Hunt WF (1915) The origin of the sulphur deposits of Sicily. Economic Geology 10: 543–579Google Scholar
  130. Hutchinson GE (1943) The biogeochemistry of aluminum and of certain related elements. Quarterly Review of Biology 18: 1–29, 128–153, 242–262, and 331–363Google Scholar
  131. Hutchinson GE (1948) On living in the biosphere. Scientific Monthly 67: 393–398Google Scholar
  132. Hutchinson GE (1950) Survey of contemporary knowledge of biogeochemistry. III. The biogeochemistry of vertebrate excretion. Bulletin of the American Museum of Natural History, Number 96, 554 ppGoogle Scholar
  133. Hutchinson GE (1954) The biochemistry of the terrestrial atmosphere. In Kuiper, G.P. (Ed) The Earth as a Planet (pp 371–433). University of Chicago PressGoogle Scholar
  134. Hutchinson GE (1957) A Treatise on Limnology, vol. 1, Geography, Physics and Chemistry. Wiley, New YorkGoogle Scholar
  135. Hutchinson GE & Wollack A (1940) Studies on Connecticut lake sediments. II. Chemical analyses of a core from Linsley Pond. American Journal of Science 238: 493–517Google Scholar
  136. Hutchinson GE & Bowen VT (1947) A direct determination of the phosphorus cycle in a small lake. Proceedings of the National Academy of Sciences 33: 148–153Google Scholar
  137. Hutchinson GE & Bowen VT (1950) Limnological studies in Connecticut. IX. A quantitative radiochemical study of the phosphorus cycle in Linsley Pond. Ecology 31: 194–203Google Scholar
  138. Hutton J (1785) System of the Earth. Seen in White GW (Ed), (1970). Contributions to the History of Geology 5: 1–30Google Scholar
  139. Hutton J (1795) Theory of the Earth, 2 volumes. Cadell, Junior, and Davies, London, England. Seen in reprint (1959). Wheldon and Wesley, Cadicote, Hertfordshire, EnglandGoogle Scholar
  140. Ingenhousz J (1779) Experiments upon vegetables, discovering their great power of purifying the common air in the sunshine, etc. Elmsley, London. Seen in an abridged edition with annotations by Reed (1949)Google Scholar
  141. Jameson R (1800) On peat or turf. Transactions of the Dublin Society, Number 1, 10 ppGoogle Scholar
  142. Jensen ML & Nakai N (1961) Sources and isotopic composition of atmospheric sulfur. Science 134: 2102–2104Google Scholar
  143. Jensen S & Jernelöv A (1969) Biological methylation of mercury in aquatic organisms. Nature 223: 753–754Google Scholar
  144. Jodin (1862) Du rle physiologique de l'azote. Comptes Rendus de l'Académie des Sciences 55: 612–615Google Scholar
  145. Joffe JS (1931) Soil profile studies: III. The process of podzolization. Soil Science 32: 303–323Google Scholar
  146. Johnson SW (1866) Peat and Its Uses As Fertilizer and Fuel. Orange Judd and Co., New YorkGoogle Scholar
  147. Johnston JFW (1843) Lectures on Agricultural Chemistry and Geology. Wiley and Putnam, New York. Seen in second edition (1847) Blackwood, Edinburgh, ScotlandGoogle Scholar
  148. Joly J (1899) An estimate of the geological age of the earth. Transactions of the Royal Society of Dublin 7: 23–66Google Scholar
  149. Joly J (1922) On a new method of gauging the discharge of rivers. Scientific Proceeding of the Royal Dublin Society 16: 489–491Google Scholar
  150. Joulie H (1885) Fixation de l'azote atmospherique dans le sol cultivé. Comptes Rendus de l'Académie des Sciences 101: 1008–1011Google Scholar
  151. Julien A (1879) On the geological action of the humus acids. Proceedings of the American Association for the Advancement of Science 28: 311–410Google Scholar
  152. Keen R (1976) Friedrich Wöhler. Dictionary of Scientific Biography 14: 474–479Google Scholar
  153. Kerr RA (1988) No longer wilful, Gaia becomes respectable. Science 240: 393–395Google Scholar
  154. Koene C-J (1856) De la formation de la terre, de la composition de l'air à l'origine, des changements que l'atmosphére à éprouvés depuis, et de l'influence que ces changements ont sur la durée de la vie de l'homme et sur l'existence de son éspece. In: Conferences Publiques sur la Création à Partir de la Formation de la Terre jusqu'a l'Extinction de l'Espéce Humaine ou Apercu d'Histoire Naturelle de l'Air et de Miasmes à propos des Fabriques d'Acides et des Plantes dont leurs Travaux Font l'Objet (pp 7–32). Larcier, University Library, BrusselsGoogle Scholar
  155. Kovalevsky AL (1987) Biogeochemical Exploration for Mineral Deposits, 2nd ed. VNU Science Press, UtrechtGoogle Scholar
  156. Krumbein WE (Ed) (1978) Environmental Biogeochemistry and Geomicrobiology, 3 vol. Ann Arbor Science, Ann Arbor, MichiganGoogle Scholar
  157. Krumholz LA (1956) Observations on the fish populations of a lake contaminated by radioactive wastes. Bulletin of the American Museum of Natural History 110: 277–368Google Scholar
  158. Kvenvolden KA (Ed) (1974) Geochemistry and the Origin of Life — Benchmark Papers in Geology. Dowden, Hutchinson, Ross, Stroudsburgh, PennsylvaniaGoogle Scholar
  159. Lamarck JB (1802) Hydrogéologie, translated by Garozzi AV (1964). University of Illinois PressGoogle Scholar
  160. Lambridis H (1976) Empedocles. University of Alabama PressGoogle Scholar
  161. Lane AC (1917) Lawson's correlation of the Pre-Cambrian era. American Journal of Science, Series 4, 43: 42–48Google Scholar
  162. Lane T (1769) On the solubility of iron in simple water, by the intervention of fixed air. Philosophical Transactions of the Royal Society of London 59: 216–227Google Scholar
  163. Lawes JB & Gilbert JH (1880 and 1900). Agricultural, botanical, and chemical results of experiments on the mixed herbage of permanent meadow, conducted for more than twenty years in succession on the same land, Part I. Philosophical Transactions of the Royal Society of London, Series B, 171: 289–416, and 192:139–209Google Scholar
  164. Lawes JB & Gilbert JH (1882) On the amount and composition of the rain and drainage waters collected at Rothamsted. Journal of the Royal Agricultural Society of England, Series 2, 18: 1–71Google Scholar
  165. Lawes JB, Gilbert JH & Pugh E (1861) On the sources of nitrogen of vegetation; with special reference to the question of whether plants assimilate free or uncombined nitrogen. Philosophical Transactions of the Royal Society of London 151 (2): 431–577Google Scholar
  166. LeChevalier HA & Solorotovsky M (1965) Three Centuries of Microbiology. McGraw-Hill, New YorkGoogle Scholar
  167. LeRoy ELEJ (1927) l'Exigence Ideáliste et la Fait d'Évolution. Boivin, ParisGoogle Scholar
  168. Libby WF (1952) Radiocarbon Dating. University of Chicago PressGoogle Scholar
  169. Libby WF, Anderson EC & Arnold JR (1949) Age determination by radiocarbon content; world-wide assay of natural radiocarbon. Science 109: 227–228Google Scholar
  170. Liebig J (1839) Über die Erscheinungen der Gährung, Fäulnis and Verwesung. Seen in translation by Brock (1961)Google Scholar
  171. Liebig J (1840) Chemistry in Its Applications to Agriculture. Seen in fourth edition (1849), Playfair L & Gregory M (Eds). Wiley, New YorkGoogle Scholar
  172. Liebig J (1855) Die Grundsätze der Agrikulturchemie. F. Vieweg, BraunschweigGoogle Scholar
  173. Liebig J (1859) Letters on Modern Agriculture, Blyth J (Ed). Walton and Maberly, LondonGoogle Scholar
  174. Likens GE, Bormann FH, Pierce RS, Eaton JS & Johnson NM (1977) Biogeochemistry of a Forested Ecosystem. Springer, New YorkGoogle Scholar
  175. Lindley D (1988) Is the Earth alive or dead? Nature 332: 483–484Google Scholar
  176. Lipman JG (1926) Soil life. In: Chamberlain JS (Ed) Chemistry in Agriculture (pp 52–75). The Chemical Foundation, New YorkGoogle Scholar
  177. Lovelock JE (1972) Gaia as seen through the atmosphere. Atmospheric Environment 6: 579–580Google Scholar
  178. Lovelock J.E. (1979) Gaia, a New Look at Life on Earth. Oxford University PressGoogle Scholar
  179. Lovelock JE (1990) Hands up for the Gaia hypothesis. Nature 344: 100Google Scholar
  180. Lovelock JE & Margulis L (1974). Atmospheric homeostasis by and for the biosphere: The gaia hypothesis. Tellus 26: 2–9Google Scholar
  181. Lovelock JE & Whitfield M (1982) Life span of the biosphere. Nature 296: 561–563Google Scholar
  182. Lowenstam HA (1974) Impact of life on chemical and physical processes. In: Goldberg ED (Ed) The Sea, vol. 5, Marine Chemistry (pp 715–796). Wiley, New YorkGoogle Scholar
  183. Lucretius TC (Undated) De Rerum Natura, Book 2, Verse 38. Seen in translation by Brown WH (1950) Lucretius on the Nature of Things (p 77). Rutgers University PressGoogle Scholar
  184. MacBride D (1764) Experimental Essays. A. Millar, LondonGoogle Scholar
  185. Macgregor AM (1927) The problem of the Precambrian atmosphere. South African Journal of Science 24: 155–172Google Scholar
  186. Mackereth FJH (1957) Chemical analysis in ecology illustrated from Lake District tarns and lakes. I. Chemical analysis. Proceedings of the Linnaean Society of London 167: 161–175Google Scholar
  187. MacLeod RM (1965) The Alkali Acts administration, 1863–84: The emergence of the civil scientist. Victorian Studies 9: 85–112Google Scholar
  188. Mann C (1991) Lynn Margulis: science's unruly earth mother. Science 252: 378–381Google Scholar
  189. Marchal E (1893) Sur la production de l'ammoniaque dans le sol par les microbes. Bulletin de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, Classe des Sciences, Série 3, 25: 727–741Google Scholar
  190. Margulis L & Lovelock JE (1974) Biological modulation of the earth's atmosphere. Icarus 21: 471–489Google Scholar
  191. Margulis L & Lovelock JE (1989) Gaia and geognosy. In: Rambler MB, Margulis L & Fester L (Eds) Global Ecology: Towards a Science of the Biosphere (pp 1–30). Academic Press, BostonGoogle Scholar
  192. Marsh GP (1864) The Earth as Modified by Human Action. Seen in the last revision (1885). Scribner, New YorkGoogle Scholar
  193. Marston JB, Oppenheimer M, Fujita RM & Gaffin SR (1991) Nature 349: 573–574Google Scholar
  194. Mattson S & Koutler-Andersson E (1954) Geochemistry of a raised bog. Annals of the Royal Agricultural College of Sweden 21: 321–366Google Scholar
  195. Mattson S, Sandberg G & Terning P-E (1944) Electro-chemistry of soil formation. VI. Atmospheric salts in relation to soil and peat formation and plant composition. Annals of the Agricultural College of Sweden 12: 101–118Google Scholar
  196. Mayer JR (1848) Celestial Mechanics, translated by Debus H. In: Youmans EL (Eds) The Correlation and Conservation of Forces (pp 215–359). Appleton, New YorkGoogle Scholar
  197. McElroy MB (1976) Chemical processes in the solar system: a kinetic perspective. In: Herschbach DR (Ed) Chemical Kinetics (pp 127–211), Butterworth, LondonGoogle Scholar
  198. Meusel (1875) De la putréfaction produite par les bactéries, en présence des nitrates alcalins. Journal de Pharmacie et de Chimie, Série 4, 22: 430–431Google Scholar
  199. Micklin PP (1988) Desiccation of the Aral Sea: a water-management disaster in the Soviet Union. Science 241: 1170–1176Google Scholar
  200. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117: 528–529Google Scholar
  201. Miyake Y & Sugiura Y (1955) The radiochemical analysis of radio-nuclides in sea water collected near Bikini Atoll. Papers in Meteorology and Geophysics, Tokyo 6: 33–37Google Scholar
  202. Miyake Y, Sugiura Y & Kameda K (1955) On the distribution of radioactivity in the sea around Bikini Atoll in June, 1954. Papers in Meteorology and Geophysics, Tokyo 5: 253–262Google Scholar
  203. Molina MJ & Rowlandson FS (1974) Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone. Nature 249: 810–812Google Scholar
  204. Morel FMM & Hudson RJM (1985) The geobiological cycle of trace elements in aquatic systems: Redfield revisited. In: Stumm W (Ed) Chemical Processes in Lakes (pp 251–281). Wiley-Interscience, New YorkGoogle Scholar
  205. Mortimer CH (1941–1942) The exchange of dissolved substances between mud and water in lakes. Journal of Ecology 29: 280–329 and 30: 147–201Google Scholar
  206. Mulder GJ (1840) Untersuchungen über die Humussubstanzen. Journal für Praktische Chemie 21: 203–240 and 21: 321–370Google Scholar
  207. Munk WH, Ewing GC & Revelle RR (1949) Diffusion in Bikini Lagoon. Transactions of the American Geophysical Union 30: 59–66Google Scholar
  208. Murphy BF & Nier AO (1941) Variations in the relative abundance of the carbon isotopes. Physical Review 59: 771–772Google Scholar
  209. Nash LK (1957) Plants and the atmosphere. In: Conant JB (Ed) Harvard Case Histories in Experimental Science, Volume 2 (pp 325–436). Harvard University PressGoogle Scholar
  210. Nier AO & Gulbranson EA (1939) Variations with relative abundance of the carbon isotopes. Journal of the American Chemical Society 61: 697–698Google Scholar
  211. Noddack W (1937) Der Kohlenstoff im Haushalt der Natur. Zeitschrift für Angewandte Chemie 50: 505–510Google Scholar
  212. Noddack I & Noddack W (1940) Die Haufigkeiten der Schwermetalle in Meeres Tieren. Arkiv för Zoologi 32A, Number 4, 35 ppGoogle Scholar
  213. Odén S (1976) The acidity problem — an outline of concepts. In: Dochinger LS & Seliga TA (Eds) Proceedings of the First International Symposium on Acid Precipitation and the Forest Ecosystem (pp 1–36). USDA Forest Service General Technical Report NE-23Google Scholar
  214. Odum EP (1953) Fundamentals of Ecology. Saunders, PhiladelphiaGoogle Scholar
  215. Oparin AI (1924) Proiskhozhdenie Zhizny. Izd. Moskovshii Rabochii. Seen in translation by Synge A in Bernal JD (1967) The Origin of Life (pp 199–234). Weidenfeld and Nicholson, LondonGoogle Scholar
  216. Ornstein L (1982) A biologist looks at the numbers. Physics Today 35 (3): 27–31Google Scholar
  217. Partington JR (1948) A Short History of Chemistry, second edition. MacMillan, LondonGoogle Scholar
  218. Pasteur L (1857) Mémoire sur la fermentation apelée lactique. Comptes Rendus de l'Académie des Sciences 45: 913–916. Seen in translation by Brock (1961)Google Scholar
  219. Pasteur L (1861a) Animalcules infusoires vivant sans gaz oxygéne libre et déterminant des fermentations. Comptes Rendus de l'Académie des Sciences 52: 344–347. Seen in translation by Brock (1961)Google Scholar
  220. Pasteur L (1861b) Mémoire sur les corpuscles organisés qui existent dans l'atmosphére. Examen de la doctrine des genérations spontanées. Annales des Sciences Naturelles, Serie 4, 16: 5–98. Seen in translation by Brock (1961)Google Scholar
  221. Phipson TL (1893) The chemical constitution of the atmosphere from remote geological periods to the present time. Chemical News 67: 135–136Google Scholar
  222. Plass GN (1956) The carbon dioxide theory of climatic change. Tellus 8: 140–154Google Scholar
  223. Plattes G (1639) Discovery of Infinite Treasure Hidden Since the World's Beginning. Hutton, LondonGoogle Scholar
  224. Pomeroy LR (Ed) (1974) Cycles of Essential Elements. Dowden, Hutchinson, and Ross, Stroudsberg, PennsylvaniaGoogle Scholar
  225. Popper KR (1990) Pyrite and the origin of life. Nature 344: 387Google Scholar
  226. Priestley J (1772) Observations on different kinds of air. Philosophical Transactions of the Royal Society of London 62: 147–152Google Scholar
  227. Ranalli G (1982) Robert Hooke and the Huttonian theory. Journal of Geology 90: 319–325Google Scholar
  228. Ramanathan V (1975) Greenhouse effect due to chlorofluorocarbons: climatic implications. Science 190: 50–52Google Scholar
  229. Reade TM (1876–1877) Presidents' address. Proceedings of the Liverpool Geological Society 3: 211–235Google Scholar
  230. Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of the plankton. In: Daniel RJ (Ed) James Johnstone Memorial Volume (pp 176–192). University of Liverpool PressGoogle Scholar
  231. Redfield AC (1958) The biological control of chemical factors in the environment. American Scientist 46: 204–221Google Scholar
  232. Redfield AC, Ketchum BH & Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (Ed) The Sea, Volume 2, The Composition of Sea-Water, Comparative and Descriptive Oceanography (pp 26–77). Wiley Interscience, New YorkGoogle Scholar
  233. Reed HS (1942) A Short History of the Plant Sciences. Chronica Botanica, Waltham, MassachusettsGoogle Scholar
  234. Reed HS (1949) Jan Ingenhousz, plant physiologist, with a history of the discovery of photosynthesis. Chronica Botanica 11: 285–393Google Scholar
  235. Reiners WA (1986) Complementary models for ecosystems. American Naturalist 127: 59–73Google Scholar
  236. Rennie R (1810) Essays on the Natural History and Origin of Peat Moss, III–X (pp 237–665). Constable, EdinburghGoogle Scholar
  237. Revelle R & Seuss HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase in atmospheric CO2 during the past decades. Tellus 9: 18–27Google Scholar
  238. Riley GA (1944) Carbon metabolism and photosynthetic efficiency. American Scientist 32: 132–134Google Scholar
  239. Riley GA (1953) Letter to the Editor. Journal du Conseil Internationale pour l'Exploration de la Mer 19: 85–89Google Scholar
  240. Roger J (1973) Georges-Louis Le Clerc, Comte de Buffon. Dictionary of Scientific Biography 2: 576–582Google Scholar
  241. Rogers WB & Rogers RE (1848) On the decomposition and partial solution of minerals, rocks, etc., by pure water and water charged with carbonic acid. American Journal of Science, Series 2, 5: 401–405Google Scholar
  242. Ruben S, Randall M, Kamen M & Hyde JL (1941) Heavy oxygen (018) as a tracer in the study of photosynthesis. Journal of the American Chemical Society 63: 877–879Google Scholar
  243. Rubey WW (1951) Geologic history of sea water: an attempt to state the problem. Geological Society of America Bulletin 62: 1111–1148Google Scholar
  244. Russell EJ (1912) Soil Conditions and Plant Growth. Longmans Green, LondonGoogle Scholar
  245. Russell MJ, Hall AJ & Gize AP (1990) Pyrite and the origin of life. Nature 344: 387Google Scholar
  246. Sagan C (1980) Cosmos. Random House, New YorkGoogle Scholar
  247. Salisbury EJ (1922) Stratification and hydrogen-ion concentration of the soil in relation to leaching and plant succession with special reference to woodlands. Journal of Ecology 9: 220–240Google Scholar
  248. Salisbury EJ (1925) Note on the edaphic succession in some dune soils with special reference to the time factor. Journal of Ecology 13: 322–328Google Scholar
  249. Salm-Horstmar WFKA (1856) Versuche und Resultate über die Nährung der Pflanzen. F. Vieweg, BraunschweigGoogle Scholar
  250. Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333: 313–318CrossRefGoogle Scholar
  251. Schindler DW (1985) The coupling of elemental cycles by organisms: Evidence from wholelake chemical perturbations. In: Stumm W (Ed) Chemical Processes in Lakes (pp 225–250). Wiley, New YorkGoogle Scholar
  252. Schlesinger WH (1989) Discussion: ecosystem structure and function. In: Roughgarden J, May RM & Levin SA (Eds) Perspectives in Ecological Theory (pp 268–274). Princeton University PressGoogle Scholar
  253. Schlösing T (1868) Sur la decomposition des nitrates pendant les fermentations. Comptes Rendus de l'Academie des Sciences 66: 237–239Google Scholar
  254. Schlösing T (1873) Ëtude de la nitrification. Comptes Rendus de l'Academie des Sciences 77: 353–356Google Scholar
  255. Schlösing T & Muntz A (1877) Sur la nitrification par les ferments organisées. Comptes Rendus de l'Academie des Sciences 84: 301–303Google Scholar
  256. Schönbein CF (1838) Über die Ursache der Farbenveränderung, welche manche Körper unter den Einflusse der Wärme erleiden. Annalen der Physik and Chemie 45: 263–281Google Scholar
  257. Schopf JW (Ed) (1983) Earth's Earliest Biosphere: Its Origin and Development. Princeton University PressGoogle Scholar
  258. Schroeder H (1919) Die jährliche Gesamtproduktion der grünen Pflanzendecke der Erde. Naturwissenschaften 7: 8–12Google Scholar
  259. Schwartzman DW & Volk T (1989) Biotic enhancement of weathering and the habitability of the planet. Nature 340: 457–460Google Scholar
  260. Schwann T (1837) Vorläufige Mittheilung, betreffend Versuche über die Weingährung und Fäulnis. Annalen der Physik und Chemie 41: 184–193. Seen in translation by Brock (1961)Google Scholar
  261. Shapiro J (1988) Introductory lecture at the international symposium “Phosphorus in Freshwater Ecosystems”, Uppsala, Sweden in October, 1985. Hydrobiologia 170: 9–17Google Scholar
  262. Slater AE (1951) Biological problems of space flight (a report of Professor J.B.S. Haldane's lecture to the British Interplanetary Society, 7 April 1951). Journal of the British Interplanetary Society 10: 154–158Google Scholar
  263. Slingo T (1988) Can plankton control climate? Nature 336: 421Google Scholar
  264. Smith RA (1849) On the air and water of towns. Report of the British Association for the Advancement of Science 18: 16–31Google Scholar
  265. Smith RA (1852) On the air and rain of Manchester. Memoirs of the Manchester Literary and Philosophical Society, Series 2, 10: 207–217Google Scholar
  266. Smith RA (1872) Air and Rain. Longmans, Green, LondonGoogle Scholar
  267. Spencer H (1844) Remarks on the theory of reciprocal dependence in animal and vegetable creations, as regards its bearing on paleontology. Philosophical Magazine, Series 3, 24: 90–94Google Scholar
  268. Sprengel C (1826) Über Pflanzenhumus, Humussäure and Humussäure Salze. Kastner's Archiv für Gesamte Naturlehre 8: 145–220Google Scholar
  269. Sprengel C (1837) Die Bodenkunde. Müller, LeipzigGoogle Scholar
  270. Sprengel C (1839) Die Lehre Vom Dünger. Müller, LeipzigGoogle Scholar
  271. Steeman-Nielsen E (1952) The use of radioactive carbon (C14) for measuring organic production in the sea. Journal du Conseil Internationale pour l'Exploration de la Mer 18: 117–140Google Scholar
  272. Stoddart DR (1986) On Geography and Its History. Basil Blackwell, OxfordGoogle Scholar
  273. Suess E (1875) Die Entstehung der Alpen. W. Braumüller, ViennaGoogle Scholar
  274. Sugawara K (1939) Chemical studies in lake metabolism. Bulletin of the Chemical Society of Japan 14: 375–451Google Scholar
  275. Swaine DJ (1988) Victor Moritz Goldschmidt's contributions to coal science. Fuel 67: 877–879Google Scholar
  276. Tan KH (1986) Degradation of soil minerals by organic acids. In: Huang PM & Schnitzer M (Eds) Interactions of Soil Minerals with Natural Organics and Microbes (pp 1–27). Soil Science Society of America; Special Publication Number 17, Madison, WisconsinGoogle Scholar
  277. Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16: 284–307Google Scholar
  278. Teich M (1970) The historical foundation of modern biochemistry. In: Needham J (Ed) The Chemistry of Life (pp 171–191). Cambridge University PressGoogle Scholar
  279. Thaer AD (1810) Grundsätze der Rationellen Landwirtschaft, Volume 1. Grasslerchen Buchhandlungen, Vienna, Austria. Seen in translation by Shaw W & Johnson CW (1844). Ridgway, Piccadilly, LondonGoogle Scholar
  280. Thode HG, MacNamara J & Collins CB (1949) Natural variations in the isotopic content of sulphur and their significance. Canadian Journal of Research, Section B, 27: 361–373Google Scholar
  281. Thode HG, MacNamara J & Fleming WH (1953) Sulphur isotope fractionation in nature and geological and biological time scales. Geochimica et Cosmochimica Acta 3: 235–243Google Scholar
  282. Tipler FJ (1981) Extraterrestrial beings do not exist. Physics Today 34 (4): 9 and 70–71Google Scholar
  283. Transeau EN (1926) The accumulation of energy by plants. Ohio Journal of Science 26: 1–10Google Scholar
  284. Trudinger PA & Swaine DJ (Eds) (1979). Biogeochemical Cycling of Mineral-Forming Elements. Elsevier, AmsterdamGoogle Scholar
  285. Tull J (1731) The Horse Hoeing Husbandry. Seen in the 1829 edition. Cobbett, LondonGoogle Scholar
  286. Tyndall J (1861) On the absorption and radiation of heat by gases and vapours, and on the physical connection of radiation, absorption, and conduction. Philosophical Magazine, Series 4, 22: 169–194 and 273–285Google Scholar
  287. Urey HC (1952) On the early chemical history of the earth and the origin of life. Proceedings of the National Academy of Sciences 38: 351–363Google Scholar
  288. Vallentyne JR (1954) Biochemical limnology. Science 119: 605–606Google Scholar
  289. Vallentyne JR (1963) Environmental biophysics and microbial ubiquity. Annals of the New York Academy of Sciences 108: 342–352Google Scholar
  290. Vallentyne JR & Swabey YS (1955) A re-investigation of the history of Lower Linsley Pond, Connecticut. American Journal of Science 253: 313–340Google Scholar
  291. van Niel CB (1930) Photosynthesis of bacteria. In: Contributions to Marine Biology (pp 161–169). Stanford University PressGoogle Scholar
  292. van Niel CB (1949). The comparative biochemistry of photosynthesis. In: Franck J & Loomis WE (Eds) Photosynthesis in Plants (pp 437–495). Iowa State College PressGoogle Scholar
  293. Veizer J (1988a) The earth and its life: systems perspective. Origins of Life and Evolution of the Biosphère 15: 13–39Google Scholar
  294. Veizer J (1988b) The evolving exogenic cycle. In: Garrels RM, Gregor CB, Mackenzie FT & Maynard JB (Eds) Chemical Cycles in the Evolution of the Earth (pp 175–262). Wiley, New YorkGoogle Scholar
  295. Vernadsky VI (1924) La Géochimie. Alcan, ParisGoogle Scholar
  296. Vernadsky VI (1926) Biosfera. Leningrad. Seen in abridged English translation, Synergetic Press, Oracle, Arizona (1986), also available in a complete French translation, La Biosphère, by the author, Alcan, Paris (1929)Google Scholar
  297. Vernadsky VI (1945) The biosphere and the noösphere. American Scientist 33: 1–12Google Scholar
  298. Vinogradov AP (1953) The Elementary Chemical Composition of Marine Organisms. Sears Foundation for Marine Research, Yale University, New Haven, Connecticut. Translated by Efron J & Setlow JK from the Russian in the Travaux du Laboratoire Biogéochimique de l'Académie des Sciences de l'URSS, 1935, 1937 and 1944Google Scholar
  299. Viro PJ (1953) Loss of nutrients and the natural nutrient balance of the soil in Finland. Communicationes Instituti Forestalia Fennica. Number 42.1, 50 ppGoogle Scholar
  300. Vitousek PM, Ehrlich PR, Ehrlich AH & Matson PA (1986) Human appropriation of the products of photosynthesis. BioScience 36: 368–373Google Scholar
  301. Wächterhäuser G (1988a) Pyrite formation, the first energy source for life: a hypothesis. Systematic and Applied Microbiology 10: 207–210Google Scholar
  302. Wächterhäuser G (1988b) Before enzymes and templates: theory of surface metabolism. Microbiological Reviews 52: 452–484Google Scholar
  303. Waksman SA & Starkey RL (1931) The Soil and the Microbe. Wiley, New YorkGoogle Scholar
  304. Wald G (1958) Preface (pp v-ix) to reissue of Henderson LJ (1913) The Fitness of the Environment. Beacon Press, Boston, MassachusettsGoogle Scholar
  305. Walker JCG, Hayes PB & Kasting JF (1981) A negative feedback mechanism for the longterm stabilization of earth's surface temperature. Journal of Geophysical Research 86: 9776–9782Google Scholar
  306. Wang EC, Young YL, Lacis AA, Mo T & Hansen JE (1976) Greenhouse effects due to man-made perturbations of trace gases. Science 194: 685–690Google Scholar
  307. Warington R (1851) Notice of observation on the adjustment of the relations between animal and vegetable kingdoms, by which the vital functions of both are maintained. Quarterly Journal of the Chemical Society 3: 52–54Google Scholar
  308. Warington R. (1891) On nitrification. Part IV. Journal of the Chemical Society of London 59: 484–529Google Scholar
  309. Whewell W (1834) Astronomy and General Physics Considered with Reference to Natural Theology, fourth edition. Bridgewater Treatises, volume 3. Pickering, LondonGoogle Scholar
  310. Wilson PW (1940) The Biochemistry of Symbiotic Nitrogen Fixation. University of Wisconsin PressGoogle Scholar
  311. Winogradsky S (1887) Zur Morphologic und Physiologic der Schwefelbakterien. Botanische Zeitung 45: 489–507, 513–523, 529–539, 545–559, 569–576, 585–594, and 606–610Google Scholar
  312. Winogradsky S (1889) Recherches physiologiques sur les sulfobactéries. Annales de l'Intitute Pasteur 3: 49–60. Seen in translation by Brock (1961)Google Scholar
  313. Winogradsky S. (1890) Sur les organismes de la nitrification. Comptes Rendus de l'Académie des Sciences 110: 1013–1016. Seen in translation by Brock (1961)Google Scholar
  314. Winogradsky S (1891) Recherches sur les organismes de la nitrification, Part 5. Annales de l'Institute Pasteur 5: 577–616Google Scholar
  315. Winogradsky S (1893) Sur l'assimilation de l'azote gazeux de l'atmosphére par les microbes. Comptes Rendus de l'Académie des Sciences 116: 1385–1388 and 118: 353–355Google Scholar
  316. Winogradsky S (1949) Principes de la microbiologie oecologique, une synthèse, 1945. In: Winogradsky S, Microbiologie du Sol (pp 839–848). S. Masson, ParisGoogle Scholar
  317. Wood JM (1974) Biological cycles for toxic elements in the environment. Science 183: 1049–1052Google Scholar
  318. Woodward J (1699) Some thoughts and experiments concerning vegetation. Philosophical Transactions of the Royal Society of London 21: 193–227Google Scholar
  319. Zavarzin GA (1989) Sergei N. Winogradsky and the discovery of chemosynthesis. In: Schlegel HG & Bowien B (Eds) Autotrophic Bacteria (pp 17–32). Springer-Verlag, BerlinGoogle Scholar
  320. Zhao M & Bada JL (1989) Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark. Nature 339: 463–465Google Scholar
  321. Zobell CE (1946) Marine Microbiology. Chronica Botanica, Waltham, MassachusettsGoogle Scholar
  322. Züllig H (1956) Sedimente als Ausdruck des Zustandes eines Gewässers. Schweizerische Zeitschrift für Hydrologic 18: 5–143Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Eville Gorham
    • 1
  1. 1.Department of Ecology, Evolution and BehaviorUniversity of MinnesotaMinneapolisUSA

Personalised recommendations