Environmental Biology of Fishes

, Volume 36, Issue 2, pp 135–148

Sexual conflict in simultaneous hermaphrodites: evidence from serranid fishes

  • Janet L. Leonard


Much of modern mating systems theory is founded on the assumption that a conflict of interests between males and females acts to shape reproductive strategies. If sexual conflict exists it should extend to simultaneous hermaphrodites. Here, the suggestion is made that hermaphrodite mating systems can be used to explore the assumptions associated with sexual conflict and (a) predictions about hermaphrodite mating systems, and (b) a comparative analysis of the mating systems described for a group of species of simultaneously hermaphroditic serranid fishes. Theories based on Bateman's principle predict that there should be a preferred role in hermaphrodites; i.e. the male role ought to offer potential fitness advantages to all serranids and serranid mating systems reflect this. The comparative analysis offers evidence that cheating in the male role is found in all of the species studied and explains the harem polygyny system of two species. This preference for the male role in this group offers the best evidence currently available for the existence of sexual conflict as a factor shaping mating systems.

Key words

Sexual selection Game theory Mating systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Alexander, R.D. & G. Borgia. 1979. On the origin and basis of the male-female phenomenon. pp. 417–440. In: M.S. Blum & N.A. Blum (ed.) Sexual Selection and Reproducton Competition in Insects, Academic Press, New York.Google Scholar
  2. Axelrod, R. & W.D. Hamilton. 1981. The evolution of cooperation. Science 211: 1390–1396.Google Scholar
  3. Barlow, G.W. 1975. On the sociobiology of some hermaphroditic serranid fishes, the hamlets, in Puerto Rico. Mar. Biol. 33: 295–300.CrossRefGoogle Scholar
  4. Bateman, A.J. 1948. Intra-sexual selection in Drosophila. Heredity 2: 349–368.Google Scholar
  5. Baylis, J.R. 1981. The evolution of parental care in fishes, with reference to Darwin's rule of male sexual selection. Env. Biol. Fish. 6: 223–251.CrossRefGoogle Scholar
  6. Berglund, A. 1986. Sex change by a polychaete: effects of social and reproductive costs. Ecology 67: 837–845.CrossRefGoogle Scholar
  7. Charnov, E.L. 1979. Simultaneous hermaphroditism and sexual selection. Proc. Nat. Acad. Sci. USA 76: 2480–2484.CrossRefGoogle Scholar
  8. Clark, E. 1959. Functional hermaphroditism and self-fertilization in a serranid fish. Science 129: 215–216.Google Scholar
  9. Clark, E. 1965. Mating of groupers. Nat. Hist. 74: 23–25.Google Scholar
  10. Clutton-Brock, T.H. (ed.). 1988. Reproductive success. University of Chicago Press, Chicago. 538 pp.Google Scholar
  11. Clutton-Brock, T.H. & A.C.J. Vincent. 1991. Sexual selection and the potential reproductive rates of males and females. Nature 351: 58–60.CrossRefGoogle Scholar
  12. Darwin, C. 1874. The descent of man and selection in relation to sex. (2nd. ed.). Rand-McNally, Chicago. 672 pp.Google Scholar
  13. Emlen, S.T. & L.W. Oring. 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197: 215–223.Google Scholar
  14. Fischer, E.A. 1980. The relationship between mating system and simultaneous hermaphroditism in the coral reef fish, Hypoplectrus nigricans (Serranidae). Anim. Behav. 28: 620–633.CrossRefGoogle Scholar
  15. Fischer, E.A. 1981. Sexual allocation in a simultaneously hermaphroditic reef fish, Hypoplectrus nigricans. Amer. Nat. 117: 64–82.CrossRefGoogle Scholar
  16. Fischer, E.A. 1984. Egg trading in the chalk bass, Serranus tortugarum, a simultaneous hermaphrodite. Z. Tierpsychol. 66: 143–151.Google Scholar
  17. Fischer, E.A. 1986. Mating systems of simultaneously hermaphroditic serranid fishes. pp. 776–784. In: T. Uyeno, R. Arai, T. Taniuchi & K. Matsuura (ed.) Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes, Ichthyological Society of Japan, Tokyo.Google Scholar
  18. Fischer, E.A. 1988. Simultaneous hermaphroditism, Tit-for Tat, and the evolutionary stability of social systems. Ethol. Sociobiol. 9: 119–136.CrossRefGoogle Scholar
  19. Fischer, E.A. & C.W. Petersen. 1986. Social behavior of males and simultaneous hermaphrodites in the lantern bass. Ethology 73: 235–246.CrossRefGoogle Scholar
  20. Fischer, E.A. & C.W. Petersen. 1987. The evolution of sexual patterns in the seabasses. BioScience 37: 482–489.CrossRefGoogle Scholar
  21. Fischer, R.A. 1958. The genetical theory of natural selection. Second revised edition. Dover Publications, New York. 291 pp.Google Scholar
  22. Gillespie, J.H. 1977. Natural selection for variances in offspring numbers: a new evolutionary principle. Amer. Nat. 111: 1010–1014.CrossRefGoogle Scholar
  23. Hammerstein, P. & G.A. Parker. 1987. Sexual selection: games between the sexes. pp. 119–142. In: J.W. Bradbury & M.B. Anderson (ed.) Sexual Selection: Testing the Alternatives, John Wiley & Sons, Chicester.Google Scholar
  24. Hastings, P.A. & C.W. Petersen. 1986. A novel sexual pattern in serranid fishes: simultaneous hermaphrodites and secondary males in Serranus fasciatus. Env. Biol. Fish. 15: 59–68.CrossRefGoogle Scholar
  25. Huntingford, F. & A. Turner. 1987. Animal conflict. Chapman and Hall, London. 448 pp.Google Scholar
  26. Lejeune, P., M.-M. Boveroux & J. Voss. 1980. Observation du comportement reproducteur de Serranus scriba Linné (Pisces, Serranidae), poisson hermaphrodite synchrone. Cybium, 3e serie 10: 73–80.Google Scholar
  27. Leonard, J.L. 1990. The Hermaphrodite's Dilemma. J. Theor. Biol. 147: 361–372.CrossRefGoogle Scholar
  28. Leonard, J.L. 1991. Sexual conflict and the mating systems of simultaneously hermaphroditic gastropods. Amer. Malacol. Bull. 9: 45–58.Google Scholar
  29. Leonard, J.L. & K. Lukowiak. 1984. Male-female conflict in a simultaneous hermaphrodite resolved by sperm-trading. Amer. Nat. 124: 282–286.CrossRefGoogle Scholar
  30. Leonard, J.L. & K. Lukowiak. 1985. Courtship, copulation and sperm trading in the sea slug, Navanax inermis (Opisthobranchia: Cephalaspidea). Can. J. Zool. 63: 2719–2729.CrossRefGoogle Scholar
  31. Leonard, J.L. & K. Lukowiak. 1991. Sex and the simultaneous hermaphrodite: testing models of male-female conflict in a sea slug. Anim. Behav. 41: 255–266.CrossRefGoogle Scholar
  32. Maynard Smith, J. 1982. Evolution and the theory of games. Cambridge University Press, Cambridge. 224 pp.Google Scholar
  33. Orians, G.H. 1969. On the evolution of mating systems in birds and mammals. Amer. Nat. 103: 589–603.CrossRefGoogle Scholar
  34. Parker, G.A. 1979 Sexual selection and sexual conflict. pp. 123–166. In: M.S. Blum & N.A. Blum (ed.) Sexual Selection and Reproductive Competition in Insects, Academic Press, New York.Google Scholar
  35. Petersen, C.W. 1987. Reproductive behaviour and gender allocation in Serranus fasciatus, a hermaphroditic reef fish. Anim. Behav. 35: 1601–1614.CrossRefGoogle Scholar
  36. Petersen, C.W. 1990. The relationships among population density, individual size, mating tactics, and reproductive success in a hermaphroditic fish, Serranus fasciatus. Behaviour 113: 57–80.Google Scholar
  37. Petersen, C.W. & E.A. Fischer. 1986. Mating system of the hermaphroditic coral-reef fish, Serranus baldwini. Behav. Ecol. Sociobiol. 19: 171–178.Google Scholar
  38. Philippi, T. & J. Seger. 1989. Hedging one's evolutionary bets, revisited. Trends in Ecology and Evolution 4: 41–44.CrossRefGoogle Scholar
  39. Pressley, P.H. 1981. Pair formation and joint territorality in a simultaneous hermaphrodite: the coral reef fish Serranus tigrinus. Z. Tierpsychol. 56: 33–46.Google Scholar
  40. Rapoport, A, & P.S. Dale. 1966. The ‘end’ and ‘start’ effects in iterated Prisoner's Dilemma. J. Confl. Res. 10: 363–366.Google Scholar
  41. Reinboth, R. 1962. Morphologische und funktionelle Zweigeschlechtlichkeit bei marinen Teleostieren (Serranidae, Sparidae, Centracanthidae, Labridae). Zool. Jahrb. Physiol. 69: 405–480.Google Scholar
  42. Reichert, S.E. & P. Hammerstein. 1983. Game theory in the ecological context. Ann. Rev. Ecol. Syst. 14: 377–409.CrossRefGoogle Scholar
  43. Sato, T., H. Arai & M. Kodama. 1992. Attack toward pair mate, female role taking over and stopping of spawning in a simultaneously hermaphroditic fish in an aquarium. Galaxea 11 (in press).Google Scholar
  44. Sella, G. 1985. Reciprocal egg trading and brood care in a hermaphroditic polychaete worm. Anim. Behav. 33: 938–944.CrossRefGoogle Scholar
  45. Sella, G. 1988. Reciprocation, reproductive success, and safeguards against cheating in a hermaphroditic polychaete worm, Ophyotrocha diadema Akesson, 1976. Biol. Bull. 175: 212–217.Google Scholar
  46. Smith, C.L. 1965. The patterns of sexuality and the classification of serranid fishes. Amer. Mus. Novitates 2207: 1–20.Google Scholar
  47. Sutherland, W.J. 1985. Chance can produce a sex difference in variance in mating success and explain Bateman's data. Anim. Behav. 33: 1349–1352.CrossRefGoogle Scholar
  48. Sutherland, W.J. 1986. Measures of sexual selection. Oxford Surveys in Evolutionary Biology (1985) 2: 90–91.Google Scholar
  49. Sutherland, W.J. 1987. Random and deterministic components of variance in mating success. pp. 209–219. In: J.W. Bradbury & M.B. Andersson (ed.) Sexual Selection: Testing the Alternatives, John Wiley & Sons, Chicester.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Janet L. Leonard
    • 1
  1. 1.Department of ZoologyUniversity of OklahomaNormanU.S.A.
  2. 2.Mark O. Hatfield Marine Science CenterOregon State UniversityNewportU.S.A.

Personalised recommendations