Advertisement

Environmental Biology of Fishes

, Volume 13, Issue 2, pp 113–123 | Cite as

Growth of the teleost eye: novel solutions to complex constraints

  • Russell D. Fernald
Article

Synopsis

The cichlid fish, Haplochromis burtoni, is highly dependent on vision for survival in its natural habitat. As is true of most teleost fishes, the eyes continue to grow throughout life without any obvious changes in visual capability. In H. burtoni, for example, retinal area may increase by 27 × in just 6 months. During growth, there is no obvious change in the visual sensitivity, visual acuity or lens quality which must all be appropriate for the enlarging eye. This requires that during growth competing constraints be met. For example, to maintain visual acuity, the number of ganglion cells per visual angle subtended on the retina must remain the same as must the convergence ratio of the cones onto those ganglion cells. In contrast, to maintain visual sensitivity, the number of rod photoreceptors per unit retinal area must remain the same. These requirements are in conflict since a larger eye may preserve acuity with fewer cells per unit area in a larger retina. In addition, the lens properties must remain the same as the animal increases in size so that the image available is of similar quality throughout life. Experiments have been performed to reveal the adaptations during growth which allow the fish to preserve its image of the world throughout life.

Keywords

Cichlid fish Lens growth Retinal growth Visual function Haplochromis burtoni 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Abercrombie, M. 1946. Estimation of nuclear populations from microtome sections. Anat. Rec. 94: 239–247.Google Scholar
  2. Allen, E.E. & R.D. Fernald. 1981. Spectral sensitivity in Haplochromis burtoni. Neurosci. Abstr. 7: 270.Google Scholar
  3. Blaxter, J.H.S. & M.P. Jones. 1967. The development of the retina and retinomotor responses in the herring. J. Mar. Biol. Ass. U.K. 47: 677–697.Google Scholar
  4. Fernald, R.D. 1977. Quantitative observations of Haplochromis burtoni under semi-natural conditions. Anim. Behav. 25: 643–653.Google Scholar
  5. Fernald, R.D. 1981a. Chromatic organization of a cichlid fish retina. Vis. Res. 20: 1749–1753.Google Scholar
  6. Fernald, R.D. 1981b. Visual field and retinal projections in the African cichlid fish, Haplochromis burtoni. Neurosci. Abstr. 7: 844.Google Scholar
  7. Fernald, R.D. 1983. Neural basis of visual pattern recognition in fish. pp. 570–600. In: J.P. Ewert, R.R. Capranica & D.J. Ingle (ed.) Advances in Vertebrate Neuroethology, Plenum Press, New York.Google Scholar
  8. Fernald, R.D. & N. Hirata. 1977a. Field study of Haplochromis burtoni: habitats and co-habitants. Env. Biol. Fish 2: 299–308.Google Scholar
  9. Fernald, R.D. & N. Hirata. 1977b. Field study of Haplochromis burtoni: quantitative behavioral observations. Anim. Behav. 25: 964–975.Google Scholar
  10. Fernald, R.D. & N. Hirata. 1980. The ontogeny of social behavior and body coloration in the African cichlid fish Haplochromis burtoni. Z. Tierpsychol. 50: 180–187.Google Scholar
  11. Fernald, R.D. & P. Johns. 1980. Retinal structure and growth in the African cichlid fish. Suppl. to Invest. Ophthal. 69 pp.Google Scholar
  12. Fernald, R.D. & P. Liebman. 1980. Visual receptor pigments in the African cichlid fish, Haplochromis burtoni. Vis. Res. 20: 857–864.Google Scholar
  13. Fernald, R.D. & S. Wright. 1983. Maintenance of optical quality during crystalline lens growth. Nature 301: 618–620.Google Scholar
  14. Fraley, N.B. & R.D. Fernald. 1982. Social control of developmental rate in the African cichlid fish, Haplochromis burtoni. Z. Tierpsychol. 60: 66–82.Google Scholar
  15. Hairston, N.G., K.T. Li & S.S. Easter. 1982. Fish vision and the detection of planktonic prey. Science 218: 1240–1242.Google Scholar
  16. Hendrickson, A. & S. Edwards. 1978. The use of axonal transport for autoradiographic tracing of pathways in the central nervous system. pp. 242–285. In: R.T. Robertson (ed.) Neuroanatomical Research Techniques, Academic Press, New York.Google Scholar
  17. Hogben, L. & F. Landgrebe. 1938. The pigmentary effector system IX. The receptor fields of the teleostean visual response. Proc. R. Soc. B128: 317–342.Google Scholar
  18. Hollyfield, J.G. 1972. Histogenesis of the retina in the killifish Fundulus heteroclitus. J. Comp. Neurol 144: 373–380.Google Scholar
  19. Johns, P.R. 1977. Growth of the adult goldfish eye. III. Source of the new retinal cells. J. Comp. Neurol. 176: 343–357.Google Scholar
  20. Johns, P.E. & S.S. Easter. 1977. Growth of the adult goldfish eye. II. Increase in retinal cell number. J. Comp. Neurol. 176: 331–342.Google Scholar
  21. Johns, P.R. & R.D. Fernald. 1981. Genesis of rods in teleost fish retina. Nature 293: 141–142.Google Scholar
  22. Lyall, A.H. 1957. The growth of the trout retina. Quant. J. Micros. Sci. 98: 101–110.Google Scholar
  23. Mann, I. 1950. The development of the human eye. Grune & Stratton, New York. 312 pp.Google Scholar
  24. Matthiessen, L. 1880. Untersuchungen über den Aplanatismus und die Periscopie der Krystallinsen in den Augen der Fische. Pflugers Arch. ges. Physiol. 21: 287–307.Google Scholar
  25. Maxwell, J.C. 1854. Some solutions of problems. Camb. Dubl. math. J. 8: 188–195.Google Scholar
  26. Meyer, R.L. 1978. Evidence from thymidine labeling for continuing growth of retina and tectum in juvenile goldfish. Exp. Neurol. 59: 99–111.Google Scholar
  27. Müller, H. 1952. Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zool. Jb. Allgemeine Zool. u. Physiol. der Tier. 63: 275–324.Google Scholar
  28. Philipson, B. 1969. Distribution of protein within the normal rat lens. Invest. Ophthal. 8: 258–270.Google Scholar
  29. Sandy, J.M. & J.H.S. Blaxter. 1980. A study of retinal development in larval herring and sole. J. Mar. Biol. Ass. U.K. 60: 59–71.Google Scholar
  30. Scholes, J.H. 1976. Neuronal connections and cellular arrangement in the fish retina. pp. 63–93. In: F. Zettler & R. Weiler (ed.) Neural Principles in Vision, Springer-Verlag, New York.Google Scholar
  31. Wagner, H.J. 1974. Development of the retina of Nannacara anomala, with references to regional variations of differentiation. Z. Morphol. Tiere. 79: 113–131.Google Scholar
  32. Walls, G.L. 1967. The vertebrate eye and its adaptive radiation. Reprinted by Hafner Publishing Company, London. 785 pp.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • Russell D. Fernald
    • 1
  1. 1.Institute of Neuroscience, University of OregonEugeneU.S.A.

Personalised recommendations