Environmental Biology of Fishes

, Volume 33, Issue 1–2, pp 135–152 | Cite as

Neuroecology of cyprinids: comparative, quantitative histology reveals diverse brain patterns

  • Kurt Kotrschal
  • Margit Palzenberger


Brain patterns are compared by quantitative histology in 28 native and introduced mid-European cyprinid species, considering 17 primary sensory and higher order brain areas. Cluster analysis (CLA) and principal component analysis (PCA) based on relative volumes of these brain areas indicate that cyprinid brains are diversified into four major groups, basic cyprinid, abramine, octavo-lateralis and chemosensory. PCA recognizes the brain of Phoxinus phoxinus as a fifth group. Interspecific differences in brain morphology are mainly caused by variability in relative sizes of the brain stem lobes for external and internal taste (lobus facialis and lobus vagus), as well as of octavo-lateralis and visual areas. Higher order brain areas show little interspecific variation in relative size, and were grouped by PCA according to inter- and intraspecific allometries. Hypotheses on brain functions are based on brain area correlations. We propose that the processing of external taste information in the valvula cerebelli may be particularly important for benthivorous cyprinids, whereas the integration of octavo-lateralis input with visual information via the torus longitudinalis-stratum marginale system may play a key role in the planktivores. Brain patterns suggest two major pathways of cyprinid evolutionary and ecological radiation, one leading from the basic cyprinids towards octavo-lateralis dominated midwater and surface planktivores, the second towards taste-dominated benthivores.

Key words

Allometry Comparative morphology Ecomorphology Evolutionary patterns Morphospace Nervous system Octavo-lateralis Sensory diversification Taste Vision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Ariens Kappers, C.U., G.C. Huber & E.C. Crosby. 1936. The comparative anatomy of the nervous system of vertebrates, including man. Vol. 1–3. Macmillan, New York. 1350 pp.Google Scholar
  2. Balon, E. 1968. Beitrag zur Systematik, Ökologie, Morphologie, Alter, Wachstum und Eizahl der Eier der Ziege [Pelecus cultratus (L.)] aus der Donau bei Medevedov. Biologické práce (Bratislava) 13: 63–88.Google Scholar
  3. Balon, E.K., S.S. Crawford & A. Lelek. 1986. Fish communities of the upper Danube River (Germany, Austria) prior to the new Rhein-Main-Donau connection. Env. Biol. Fish. 15: 243–271.Google Scholar
  4. Bauchot, R., M.L. Bauchot, R. Platel & J.M. Ridet. 1977. Brains of Hawaiian tropical fishes: brain size and evolution. Copeia 1977: 42–46.Google Scholar
  5. Bauchot, R., J.M. Ridet & M.L. Bauchot. 1989. The brain organization of butterflyfishes. Env. Biol. Fish. 25: 205–219.Google Scholar
  6. Blaxter, J.H.S. 1988. Sensory performance, behavior and ecology of fish. pp. 203–232. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.Google Scholar
  7. Bleckmann, H. 1988. Prey identification and prey localization in surface-feeding fihs and fishing spiders. pp. 619–641. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.Google Scholar
  8. Bock, W.J. 1980. The definition and recognition of biological adaptation. Amer. Zool. 20: 217–227.Google Scholar
  9. Brabrand, A. 1985. Food of roach (Rutilus rutilus) and ide (Leuciscus idus): significance of diet shifts for interspecific competition in omnivorous fishes. Oecologia 66: 461–467.CrossRefGoogle Scholar
  10. Brandstätter, R. & K. Kotrschal. 1989. Life history of roach, Rutilus rutilus (Cyprinidae, Teleostei): a qualitative and quantitative study on the development of sensory brain areas. Brain, Behav. Evol. 34: 35–42.Google Scholar
  11. Brandstätter, R. & K. Kotrschal. 1990. Brain growth patterns in four European cyprinid fish species (Cyprinidae, Teleostei): roach (Rutilus rutilus), bream (Abramis brama), common carp (Cyprinus carpio) and sabre carp (Pelecus cultratus). Brain, Behav. Evol. 35: 195–211.Google Scholar
  12. Brosius, G. 1989. Spss/pc. Advanced statistics and tables. McGraw Hill, Hamburg. 350 pp.Google Scholar
  13. Bullock, T.H. 1983. Why study fish brains? pp. 361–368. In: R.E. Davis & R.G. Northcut (ed.) Fish Neurobiology, The University of Michigan Press, Ann Arbor.Google Scholar
  14. Davis, B.J. & R.J. Miller. 1967. Brain patterns in minnows of the genus Hybopsis in relation to their feeding habits. Copeia 1987: 1–39.Google Scholar
  15. Davis, R.E. & R.G. Northcutt (ed.). 1983. Fish neurobiology. Vol. 2. The University of Michigan Press, Ann Arbor. 370 pp.Google Scholar
  16. Echteler, S. 1985. Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J. Comp. Physiol. A. 156: 267–280.CrossRefGoogle Scholar
  17. Evans, H.M. 1931. A comparative study of the brains in British cyprinoids in relation to their habits of feeding, with special reference to the anatomy of the medulla oblongata. Proc. R. Soc. Lond. B 108: 233–257.Google Scholar
  18. Evans, H.M. 1932. Further observations on the medulla oblongata in cyprinoids; and a comparative study of the medulla of clupeoids and cyprinoids with special reference to the acoustic tubercles. Proc. R. Soc. Lond. B 111: 247–280.Google Scholar
  19. Evans, H.M. 1935. The brain of Gadus, with special reference to the medulla oblongata and its variation according to feeding habits of different Gadidae-I. Proc. R. Soc. B. 117: 56–68.Google Scholar
  20. Evans, H.M. 1940. Brain and body of fish. A study of brain pattern in relation to hunting and feeding in fish. Technical Press, London. 224 pp.Google Scholar
  21. Evans, H.E. 1952. The correlation of brain patterns and feeding in four species of cyprinid fishes. J. Comp. Neurol. 97: 133–142.CrossRefPubMedGoogle Scholar
  22. Finger, T.E. 1978. Gustatory pathways in the bullhead catfish. II. Facial lobe connections. J. Comp. Neurol. 180: 691–706.CrossRefPubMedGoogle Scholar
  23. Finger, T.E. 1983a. The gustatory system in teleost fish. pp. 285–311. In: R.G. Northcutt & R.E. Davis (ed.) Fish Neurobiology, Vol. 1, The University of Michigan Press, Ann Arbor.Google Scholar
  24. Finger, T.E. 1983b. Organization of the teleost cerebellum. pp. 261–284. In: R.G. Northcutt & R.E. Davis (ed.) Fish Neurobiology, Vol. 1, The University of Michigan Press, Ann Arbor.Google Scholar
  25. Finger, T.E. 1987. Gustatory nuclei and pathways in the central nervous system. pp. 331–354. In: T.E. Finger & W.L. Silver (ed.) Neurobiology of Taste and Smell, J. Wiley Publishers, New York.Google Scholar
  26. Finger, T.E. 1988. Organization of the chemosensory systems within the brains of bony fishes. pp. 339–363. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.Google Scholar
  27. Geiger, W. 1956a. Quantitative Untersuchungen über das Gehirn der Knochenfische mit besonderer Berücksichtigung seines relativen Wachstums. I. Acta anat. 26: 121–163.PubMedGoogle Scholar
  28. Geiger, W. 1956b. Quantitative Untersuchungen über das Gehirn der Knochenfische mit besonderer Berücksichtigung seines relativen Wachstums. II. Acta anat. 27: 324–350.Google Scholar
  29. Goldschmid, A. & K. Kotrschal. 1989. Ecomorphology: developments and concepts. Progr. Zool. 35: 501–512.Google Scholar
  30. Gomahr, A., M. Palzenberger & K. Kotrschal. 1992. Density and distribution of external taste buds in cyprinids. Env. Biol. Fish. 33: 125–134.Google Scholar
  31. Haslett, J.R. 1989. Adult feeding by holometabolous insects: pollen and nectar as complementary nutrient sources for Rhingia campestris (Diptera: Syrphidae). Oecologia 81: 361–363.Google Scholar
  32. Huber, R. & M.K. Rylander. 1992. Brain morphology and turbidity preference in Notropis and related genera (Cyprinidae, Teleostei). Env. Biol. Fish. 33: 153–165.Google Scholar
  33. Herrick, C.J. 1905. The central gustatory paths in the brains of bony fishes. J. Comp. Neurol. Psychol. 15: 375–456.CrossRefGoogle Scholar
  34. Ito, H. & R. Kishida. 1978. Afferent and efferent fiber connections of the carp torus longitudinalis. J. Comp. Neurol. 181: 465–476.CrossRefPubMedGoogle Scholar
  35. Jolicoeur, P. & G. Baron. 1980. Brain center correlations among Chiroptera. Brain, Behav. Evol. 17: 419–431.Google Scholar
  36. Junger, H. & K. Kotrschal. 1989. Developmental changes in the optic tracts of cyprinids (Cyprindae, Teleostei). p. 191. In: N. Elsner & W. Singer (ed.) Dynamics and Plasticity in Neuronal Systems, Proceedings of the 17th G\:ottingen Neurobiology Conference, Georg Thieme Verlag, Stuttgart.Google Scholar
  37. Kaiser, H.F. 1974. An index of factorial simplicity. Psychometrica 39: 31–36.Google Scholar
  38. Khanna, S.S. & H.R. Singh. 1966. Morphology of the teleostean brain in relation to feeding habits. Proc. Nat. Acad. Sci. India 336: 306–316.Google Scholar
  39. Kirka, A. 1963a. Brain structures in the Danube representatives of perciformes and the role of brain study for the systematic and ecology of fishes. Zool. Zhurnal 42: 400–407 (in Russian).Google Scholar
  40. Kirka, A. 1963b. Die äuβere Gehirnform des Donaunerflings (Rutilus pigus virgo He.) und ein Vergleich seines Gehirns mit der Donauplötze (Rutilus rutilus carpathorossicus Vladykov) und der Elbeplötze (Rutilus rutilus frici Misik). Zeitschrift für Fischerei und deren Hilfswissenschaften 11: 129–141.Google Scholar
  41. Kishida, R. 1979. Comparative study on the teleostean optic tectum. J. Hirnforsch. 20: 57–67.PubMedGoogle Scholar
  42. Kotrschal, K. 1989. Trophic ecomorphology in eastern Pacific blennioid fishes: character transformation of oral jaws and associated change of their biological roles. Env. Biol. Fish. 24: 199–218.Google Scholar
  43. Kotrschal, K. & H. Junger. 1988. Patterns of brain morphology in mid-European Cyprinidae (Pisces, Teleostei): a quantitative histological study. J. Hirnforsch. 29: 341–352.PubMedGoogle Scholar
  44. Kotrschal, K., H. Adam, R. Brandstätter, H. Junger, M. Zaunreiter & A. Goldschmid. 1990. Larval size constraints determine directional ontogenetic shifts in the visual system of teleosts. A mini-review. Z. Zool. Syst. Evolutionsforsch. 28: 166–182.Google Scholar
  45. Kotrschal, K., R. Brandstätter, A. Gomahr, H. Junger, M. Palzenberger & M. Zaunreiter. 1991. Brain and sensory systems. In: I.J. Winfield & J.S. Nelson (ed.) Cyprinid Fishes, Systematics, Biology and Exploitation Chapman and Hall, London.Google Scholar
  46. Ladiges, W. & D. Vogt. 1965. Die Süβwasserfische Europas. Paul Parey, Hamburg. 299 pp.Google Scholar
  47. Lammens, E.H.R.R., J. Geursen & P.J. McGillavry. 1987. Diet shifts, feeding efficiency and coexistence of bream (Abramis brama), roach (Rutilus rutilus) and white bream (Blicca bjoercna) in hypertrophic lakes. pp. 153–162. In: S. Kullander & B. Fernholm (ed.) Proceedings of the V Congress of European Ichthyologists, Stockholm.Google Scholar
  48. Lythgoe, J.N. 1988. Light and vision in the aquatic environment. pp. 57–82. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals. Springer Verlag, New York.Google Scholar
  49. Maitland, P.S. 1981. Freshwater fishes of Britain and Europe. Hamlyn, London. 256 pp.Google Scholar
  50. Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, D. Raup & L. Wolpert. 1985. Developmental constraints and evolution. Quart. Rev. Biol. 60: 260–287.Google Scholar
  51. Mayser, P. 1881. Vergleichend anatomische Studien über das Gehirn der Knochenfische mit besonderer Berücksichtigung der Cyprinoiden. Arch. wiss. Zool. 36: 259–366.Google Scholar
  52. McCormick, C.A. & M.R. Braford, Jr. 1988. Central connections of the octavolateralis system: evolutionary considerations. pp. 773–756. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.Google Scholar
  53. Miller, R.J. & H.E. Evans. 1965. External morphology of the brains and lips in catastomid fishes. Copeia 1965: 467–487.Google Scholar
  54. Montgomery, J.C. & J.A. Macdonald. 1987. Sensory tuning of lateral line receptors in Antarctic fish to the movement of planktonic prey. Science 235: 195–196.Google Scholar
  55. Morita, Y. & T.E. Finger. 1985a. Topography and laminar organization of the vagal gustatory system in the goldfish, Carassius auratus. J. Comp. Neurol. 238: 187–201.CrossRefPubMedGoogle Scholar
  56. Morita, Y. & T.E. Finger. 1985b. Reflex connections of the facial and vagal gustatory systems in the brain stem of the bullhead catfish, Ictalurus nebulosus. J. Comp. Neurol. 231: 547–558.CrossRefPubMedGoogle Scholar
  57. Morita, Y. & T.E. Finger. 1987. Topographic representation of the sensory and motor roots of the vagus nerve in the medulla of goldfish, Carassius auratus. J. Comp. Neurol. 264: 231–249.CrossRefPubMedGoogle Scholar
  58. Morita, Y. & H. Masai. 1980. Central gustatory paths in the crucian carp, Carassius carassius. J. Comp. Neurol. 191: 119–132.CrossRefPubMedGoogle Scholar
  59. Nelson, J.S. 1984. Fishes of the world. J. Wiley & Sons, New York. 523 pp.Google Scholar
  60. Northcutt, R.G. 1988 Sensory and other neural traits and the adaptationist program: mackerels of San Marco? pp. 869–883. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.Google Scholar
  61. Northcutt, R.G. & R.E. Davis (ed.). 1983. Fish neurobiology, Vol. 1. The Michigan University Press, Ann Arbor. 345 pp.Google Scholar
  62. Northcutt, R.G. & M.F. Wullimann. 1988. The visual system in teleost fishes: morphological patterns and trends. pp. 515–552. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.Google Scholar
  63. Northmore, D.P.M. 1984. Visual and saccadic activity in the goldfish torus longitudinalis. J. Comp. Physiol. A 155: 333–340.CrossRefGoogle Scholar
  64. Northmore, D.P.M., B. Williams & H. Vanegas. 1983. The teleostean torus longitudinalis: responses related to eye movements, visuotopic mapping, and functional relations with the optic tectum. J. Comp. Physiol. A 150: 39–50.CrossRefGoogle Scholar
  65. Pagel, M.D. & P.H. Harvey. 1989. Taxonomic differences in the scaling of brain on body weight among mammals. Science 244: 1589–1593.PubMedGoogle Scholar
  66. Peter, R.E. 1979. The brain and feeding behavior. pp. 121–159. In: Hoar & Randall (ed.) Fish Physiology, Vol. 8, Academic Press, New York.Google Scholar
  67. Pirlot, P. & P. Jolicoeur. 1982. Correlations between major brain regions in Chiroptera. Brain. Behav. Evol. 20: 172–181.PubMedGoogle Scholar
  68. Ridet, J.M., R. Bauchot, M. Diagne & R. Platel. 1977. Croissance ontogenetique et phylogenetique de l&encephale des Teleosteens. Cahiers Biol. Marine 18: 163–176.Google Scholar
  69. Schemmel, C. 1967. Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen. Z. Morph. Tiere 61: 255–305.CrossRefGoogle Scholar
  70. Schiemer, F. 1985. Die Bedeutung der Augewässer als Schutzzonen für die Fischfauna. Österr. Wasserwirtschaft 37: 239–245.Google Scholar
  71. Schiemer, F. 1988. Gefährdete Cypriniden — Indikatoren für die ökologische Intaktheit von Fluβsystemen. Natur und Landschaft 63: 370–373.Google Scholar
  72. Schnitzlein, H.N. 1964. Correlation of habit and structure in the fish brain. Amer. Zool. 4: 21–32.Google Scholar
  73. Sibbing, F.A. 1988. Specializations and limitations in the utilization of food resources by the carp, Cyprinus carpio: a study of oral food processing. Env. Biol. Fish. 22: 161–178.Google Scholar
  74. Simpson, G.G. 1944. Tempo and mode in evolution. Columbia University Press, New York. 420 pp.Google Scholar
  75. Snow, J.L. & M.K. Rylander. 1982. A quantitative study of the optic system of butterflyfishes (family Chaetodontidae). J. Hirnforsch. 23: 121–125.PubMedGoogle Scholar
  76. Sokal, R.R. & F.J. Rohlf. 1981. Biometry, 2nd ed. Freeman, San Francisco. 859 pp.Google Scholar
  77. Stephan, H. 1960. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. A. wiss. Zool. 164: 143–172.Google Scholar
  78. Stephan, H. 1967. Quantitative Vergleiche zur phylogenetischen Entwicklung des Gehirns der Primaten mit Hilfe der Progressionsindices. Mitt. Max-Planck Ges. 2: 63–68.Google Scholar
  79. Stephan, H. & P. Pirlot. 1970. Volumetric comparison of brain structures in bats (an attempt to a phylogenetic interpretation). Bijdr. Dierkunde 40: 95–98.Google Scholar
  80. Uchihashi, K. 1953. Ecological study of Japanese teleosts in relation to brain morphology. Bull. Jap. Sea Regional Fish. Res. Lab. 2: 1–166.Google Scholar
  81. Vanegas, H. 1983. Organization and physiology of the teleostean optic tectum. pp. 43–87. In: R.E. Davis & R.G. Northcutt (ed.) Fish Neurobiology, The University of Michigan Press, Ann Arbor.Google Scholar
  82. Werner, E.E. 1984. The mechanisms of species interactions and community organization in fishes. pp. 360–383. In: D.R. Strong, D. Simberloff, L.G. Abele & A.B. Thistle (ed.) Ecological Communities, Conceptual Issues and Evidence, Princeton University Press, Princeton.Google Scholar
  83. Wieser, W. 1986. Die Ökophysiologie der Cyprinidenfauna österreichischer Gewässer. Ein Forschungsschwerpunkt des Fonds zur Förderung der wissenschaftlichen Forschung. Österreichs Fischerei 36: 88–93.Google Scholar
  84. Winkelmann, E. & L. Winkelmann. 1968. Vergleichend histologische Untersuchungen zur funktionellen Morphologie des Tectum opticum verschiedener Teleostier. J. Hirnforsch. 10: 1–16.PubMedGoogle Scholar
  85. Wullimann, M.F. & R.G. Northcutt. 1989. Afferent connections of the valvula cerebelli in two teleosts, the common goldfish and the green sunfish. J. Comp. Neurol. 289: 554–567.CrossRefPubMedGoogle Scholar
  86. Zaunreiter, M. & K. Kotrschal. 1989. Shifting retinal parameters during growth in roach (Rutilus rutilus, Cyprinidae, Teleostei). p. 192. In: N. Elsner & W. Singer (ed.) Dynamics and Plasticity in Neuronal Systems, Proceedings of the 17th G\:ottingen Neurobiology Conference, Georg Thieme Verlag, Stuttgart.Google Scholar
  87. Zaunreiter, M., H. Junger & K. Kotrschal. 1991. Ecomorphology of the cyprinid retina: a quantitative histological study on ontogenetic shifts and interspecific variation. Vision. Res. 31: 383–394.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Kurt Kotrschal
    • 1
  • Margit Palzenberger
    • 1
  1. 1.Zoologisches Institut der Universität SalzburgSalzburgAustria

Personalised recommendations