Environmental Biology of Fishes

, Volume 40, Issue 3, pp 303–318 | Cite as

Cardiovascular and respiratory physiology of tuna: adaptations for support of exceptionally high metabolic rates

  • Peter G. Bushnell
  • David R. Jones


Both physical and physiological modifications to the oxygen transport system promote high metabolic performance of tuna. The large surface area of the gills and thin blood-water barrier means that O2 utilization is high (30–50%) even when ram ventilation approaches 101 min−1kg−1. The heart is extremely large and generates peak blood pressures in the range of 70–100 mmHg at frequencies of 1–5 Hz. The blood O2 capacity approaches 16 ml dl−1 and a large Bohr coefficient (−0.83 to −1.17) ensures adequate loading and unloading of O2 from the well buffered blood (20.9 slykes). Tuna muscles have aerobic oxidation rates that are 3–5 times higher than in other teleosts and extremely high glycolytic capacity (150 μmol g−1 lactate generated) due to enhanced concentration of glycolytic enzymes. Gill resistance in tuna is high and may be more than 50% of total peripheral resistance so that dorsal aortic pressure is similar to that in other active fishes such as salmon or trout. An O2 delivery/demand model predicts the maximum sustained swimming speed of small yellowfin and skipjack tuna is 5.6 BL s−1 and 3.5 BL sec−1, respectively. The surplus O2 delivery capacity at lower swimming speeds allows tuna to repay large oxygen debts while swimming at 2–2.5 BL s−1. Maximum oxygen consumption (7–9 × above the standard metabolic rate) at maximum exercise is provided by approximately 2 × increases in each of heart rate, stroke volume, and arterial-venous O2 content difference.

Key words

Scombrids Exercise Swimming Oxygen dissociation Oxygen uptake Acid-base balance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Arthur, P.G., T.G. West, R.W. Brill, P.M. Schulte & P.W. Hochachka. 1992. Recovery metabolism of tuna white muscle: rapid and parallel changes of lactate and phosphocreatine after exercise. Can. J. Zool. 70: 1230–1239.Google Scholar
  2. Basile, C., G. Goldspink, M. Modigh & B. Tota. 1976. Morphological and biochemical characterization of the inner and outer ventricular myocardial layers of adult tuna fishThunnus thynnus L. Comp. Biochem. Physiol. 54B: 279–283.Google Scholar
  3. Block,B.A. 1991. Endothermy in fish: thermogenesis, ecology, and evolution. pp. 269–311.In: P.W. Hochachka & T. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, Volume 1, Elsevier Science, New York.Google Scholar
  4. Boggs, C.H. & J.F. Kitchell. 1991. Tuna metabolic rates estimated from energy losses during starvation. Physiol. Zool. 64: 502–524.Google Scholar
  5. Boutilier, R.G., P. Aughton & G. Shelton. 1984. O2 and CO2 transport in relation to ventilation in the Atlantic mackerel,Scomber scombrus. Can. J. Zool. 62: 546–554.Google Scholar
  6. Brett, J.R. 1964. The respiratory metabolism and swimming performance of young sockey salmon. J. Fish. Res. Board Can. 21: 1126–1183.Google Scholar
  7. Brett, J.R. 1972. The metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates. Respir. Physiol. 14: 151–170.PubMedGoogle Scholar
  8. Brill, R.W. 1979. The effect of body size on the standard metabolic rate of skipjack tuna,Katsuwonus pelamis. U.S. Fish. Bull. 77: 494–498.Google Scholar
  9. Brill, R.W 1987. On the standard metabolic rate of tropical tunas, including the effect of body size and acute temperature change. U.S. Fish. Bull. 85: 25–35.Google Scholar
  10. Brill, R.W. & P.G. Bushnell. 1991. Effects of open and closed system temperature changes on blood oxygen dissociation curves of skipjack tuna,Katsuwonus pelamis, and yellowfin tuna,Thunnus albacares. Can. J. Zool. 69: 1814–1821.Google Scholar
  11. Brill, R.W. & A. Dizon. 1979. Red and white muscle fiber activity in swimming skipjack tuna,Katsuwonus pelamis. J. Fish Biol. 15: 679–685.Google Scholar
  12. Brill, R.W., P.G. Bushnell, D.R. Jones & M. Shimizu. 1992. Effects of acute temperature change, in vivo and in vitro, on the acid base status of blood from yellowfin tuna (Thunnus albacares). Can. J. Zool. 70: 654–660.Google Scholar
  13. Bushnell, P.G. & R.W. Brill. 1991. Responses of swimming skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tunas to acute hypoxia, and a model of their cardiorespiratory function. Physiol. Zool. 64: 887–911.Google Scholar
  14. Bushnell, P.G. & R.W. Brill. 1992. Oxygen transport and cardiovascular responses in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. J. Comp. Physiol. 162B: 131–143.Google Scholar
  15. Bushnell, P.G., R.W. Brill & R.E. Bourke. 1990. Cardiorespiratory responses of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus) to acute reductions in ambient oxygen. Can. J. Zool. 68: 1857–1865.Google Scholar
  16. Bushnell,P.G., D.R. Jones & A.P. Farrell. 1992. The arterial system. pp. 89–120.In: W.S. Hoar, D.J. Randall & A.P. Farrell (ed.) Fish Physiology, Volume 12A, Academic Press, New YorkGoogle Scholar
  17. Bushnell, P.G., J.F. Steffensen & K. Johansen. 1984. Oxygen consumption and swimming performance in hypoxia-acclimated rainbow troutSalmo gairdneri. J. Exp. Biol. 113: 225–235.Google Scholar
  18. Cameron, J.N. 1989. Acid-base homeostasis: past and present perspectives. Physiol. Zool. 62: 845–865Google Scholar
  19. Campbell, K.B., E.A. Rhode, R.H. Cox, W.C. Hunter & A. Noordergraaf 1981. Functional consequences of expanded aortic bulb: a model study. Amer. J. Physiol. 240: R200–R210.Google Scholar
  20. Carey, F.G. & Q.H. Gibson. 1983. Heat and oxygen exchange in the rete mirabile of the bluefin tuna,Thunnus thynnus. Comp. Biochem. Physiol. 74A: 333–342.Google Scholar
  21. Carey, F.G. & R.J. Olson. 1982. Sonic tracking experiments with tunas. ICCAT Collective Volume of Scientific Papers 2: 446–458.Google Scholar
  22. Carey, F.G. & J.M. Teal. 1969. Regulation of body temperature by the bluefin tuna. Comp. Biochem. Physiol. 28: 205–213.PubMedGoogle Scholar
  23. Cech, J.J. Jr., R.M. Laurs & J.B. Graham. 1984. Temperature-induced changes in blood gas equilibria in the albacore,Thunnus alalunga, a warm-bodied tuna. J. Exp. Biol. 109: 21–34.Google Scholar
  24. Daxboeck, C., P.S. Davie, S.F. Perry & D.J. Randall. 1982. Oxygen uptake in a spontaneously ventilating, blood perfused trout preparation. J. Exp. Biol. 101: 33–45.Google Scholar
  25. Dewar, H. & J.B. Graham. 1994. Studies of tropical tuna swimming performance: I. Energetics. J. Exp. Biol. (in press)Google Scholar
  26. Dizon, A.E., R.W. Brill & H.S.H. Yuen. 1979. Correlations between environment, physiology and activity and the effects on thermoregulation in skipjack tuna. pp. 233–359.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.Google Scholar
  27. Driedzic, W.R. 1983. The fish heart as a model system for the study of myoglobin. Comp. Biochem. Physiol. 76A: 1078–1083.Google Scholar
  28. Farrell, A.P. & D.R. Jones. 1992. The heart. pp. 1–73.In: W.S. Hoar, D.J. Randall & A.P. Farrell (ed.) Fish Physiology, Volume 12A, Academic Press, New York.Google Scholar
  29. Farrell, A.P, P.S. Davie, C.E. Franklin, J.A. Johansen & R.W. Brill. 1992. Cardiac physiology in tunas: I. In vitro perfused heart preparations from yellowfin and skipjack tunas. Can. J. Zool. 70: 1200–1210.Google Scholar
  30. Farrell, A.P, A.M. Hammons, M.S. Graham & G.F. Tibbits. 1988. Cardiac growth in rainbow trout,Salmo gairdneri. Can. J. Zool. 66: 2368–2373.Google Scholar
  31. Giovanne, A., G. Greco & B. Tota. 1980. Myoglobin in the heart ventricle of tuna and other fishes. Experimentia 36: 6–7.Google Scholar
  32. Gooding, R.M., W.H. Neill & A.E. Dizon. 1981. Respiration rates and low oxygen tolerance limits in skipjack tuna,Katsuwonus pelamis. U.S. Fish. Bull. 79: 31–48.Google Scholar
  33. Graham, J.B. & D.R. Diener. 1978. Comparative morphology of the central heat exchangers in the skipjackKatsuwonus andEuthynnus. pp. 113–134.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.Google Scholar
  34. Graham, J.B. & R.M. Laurs. 1982. Metabolic rate of the albacore tunaThunnus alalunga. Mar. Biol. 72: 1–6.Google Scholar
  35. Graham, J.B., W.R. Lowell, N.C. Lai & R.M. Laurs. 1989. O2 tension, swimming-velocity, and thermal effects on the metabolic rate of the Pacific albacoreThunnus alalunga. Exp. Biol. 48: 89–94.PubMedGoogle Scholar
  36. Guppy, M., W.C. Hulbert & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. II. Enzyme and metabolite profiles. J. Exp. Biol. 82: 303–319.Google Scholar
  37. Guyton, A.C., A.E. Taylor & H.J. Granger. 1975. Circulatory physiology II: dynamics and control of the body fluids. Saunders, Philadelphia. 397 pp.Google Scholar
  38. Hargens, A.R., R.W. Millard & K. Johansen. 1974. High capillary permeability in fishes. Comp. Biochem. Physiol. 48A: 675–680.Google Scholar
  39. Heisler, N.1984. Acid-base regulation in fishes. pp. 315–392.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 10A, Academic Press, New York.Google Scholar
  40. Hochachka, P.W., W.C. Hulbert & M. Guppy. 1978. THe tuna power plant and furnace. pp. 153–174.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.Google Scholar
  41. Holland, K.N., R.W. Brill & R.K.C. Chang. 1990. Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. U.S. Fish. Bull. 88: 493–507.Google Scholar
  42. Hughes, G.M. 1984. General anatomy of the gills. pp. 1–72.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 10, Academic Press, New York.Google Scholar
  43. Hughes, G.M. & M. Morgan. 1973. The structure of fish gills in relation to their respiratory function. Biol. Rev. 48: 419–475.Google Scholar
  44. Hughes, G.M. & G. Shelton. 1962. Respiratory mechanisms and their nervous control in fish. Adv. Comp. Physiol. Biochem. 1: 275–364.PubMedGoogle Scholar
  45. Hulbert, H.C., M. Guppy, B. Murphy & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. II. Enzyme and metabolite profiles. J. Exp. Biol. 82: 289–301.PubMedGoogle Scholar
  46. Johansen, K. 1965. Cardiovascular dynamics in fishes, amphibians, and reptiles. Ann. N.Y. Acad. Sci. 127: 414–442.PubMedGoogle Scholar
  47. Jones, D.R. 1991. Cardiac energetics and the design of vertebrate arterial systems. pp. 159–168.In: R.W. Blake (ed.) Efficiency and Economy in Animal Physiology, Cambridge University Press, Cambridge.Google Scholar
  48. Jones, D.R., R.W. Brill & P.G. Bushnell. 1993. Ventricular and arterial dynamics of anesthetized and swimming tuna. J. Exp. Biol. 182: 97–105.Google Scholar
  49. Jones, D.R., R.W. Brill & D.C. Mense. 1986. The influence of blood gas properties on gas tensions and pH of ventral and dorsal aortic blood in free-swimming tuna,Euthynnus affinis. J. Exp. Biol. 120: 201–213.Google Scholar
  50. Jones, D.R., R.W. Brill, P.J. Butler, P.G. Bushnell & M.R.A. Heieis. 1990. Measurement of ventilation volume in swimming tunas. J. Exp. Biol. 149: 491–498.Google Scholar
  51. Kanwisher, J., K. Lawson & G. Sundnes. 1974. Acoustic telemetry from fish. U.S. Fish. Bull. 72: 251–255.Google Scholar
  52. Kiceniuk, J.W. & D.R. Jones. 1977. The oxygen transport system in troutSalmo gairdneri during sustained exercise. J. Exp. Biol. 69: 247–260.Google Scholar
  53. Kobyayashi, H., B. Pelster & P. Scheid. 1989. Water and lactate movement in the swimbladder of the eel,Anguilla anguilla. Respir. Physiol. 78: 45–57.PubMedGoogle Scholar
  54. Lai, N.C., J.B. Graham, W.R. Lowell & R.M. Laurs. 1987. Pericardial and vascular pressures and blood flow in the albacore tuna,Thunnus alalunga. Exp. Biol. 46: 187–192.PubMedGoogle Scholar
  55. Magnuson, J.J. 1978. Locomotion by scombrid fishes: hydrodynamics, morphology, and behavior. pp. 239–313.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 7, Academic Press, New York.Google Scholar
  56. Moyes, C.D., O.A. Mathieu-Costello & R.W. Brill. 1992. Mitochondrial metabolism of cardiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish. Can. J. Zool. 70: 1246–1250.Google Scholar
  57. Muir, B.S. & G.M. Hughes. 1969. Gill dimensions for three species of tunny. J. Exp. Biol. 51: 271–285.Google Scholar
  58. Nordlie, F.G. & C.W. Leffler. 1975. Ionic regulation and the energetics of osmoregulation inMugil cephalus Lin. Comp. Biochem. Physiol. 51A: 125–131.Google Scholar
  59. Perry, S.F., C. Daxboeck, B. Emmett, P.W. Hochachka & R.W. Brill. 1985a. Effects of temperature change on acid-base regulation in skipjack tuna (Katsuwonus pelamis) blood. Comp. Biochem. Physiol. 81A: 49–53.Google Scholar
  60. Perry, S.F., C. Daxboeck, B. Emmett, P.W. Hochachka & R.W. Brill. 1985b. Effects of exhausting exercise on acid-base regulation in skipjack tuna (Katsuwonus pelamis) blood. Physiol. Zool. 58: 421–429.Google Scholar
  61. Rahn, H.1967. Gas transport from the environment to the cell. pp. 3–23.In: A.V.S. de Reuck & R. Porter (ed.) Development of the Lung, Ciba Found. Symp., London.Google Scholar
  62. Roberts, J.L., 1978. Ram gill ventilation in fish. pp. 83–88.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.Google Scholar
  63. Sanchez-Quintana, D. & J. Hurle, 1987. Ventricular myocardial architecture in marine fishes. Anat. Rec. 217: 263–273.PubMedGoogle Scholar
  64. Santer, R.M., M. Greer Walker, L. Emerson & P.R. Whitammes. 1983. On the morphology of the heart ventricle in marine teleost fish (Teleosti). Comp. Biochem. Physiol. 76A: 453–457.Google Scholar
  65. Schulte, P.M., C.D. Moyes & P.W. Hochachka. 1992. Integrating metabolic pathways in post-exercise recovery of white muscle. J. Exp. Biol. 166: 181–196.PubMedGoogle Scholar
  66. Serafini-Fracassini, A., J.M. Field, M. Spina, S. Garbisa & R.J. Stuart, 1978. The morphological organization and ultrastructure of elastin in the arterial wall of trout (Salmo gairdneri and salmon (Salmo salar J. Ultrastruc. Res. 65: 1–12.Google Scholar
  67. Shelton, G., D.R. Jones & W.K. Milsom.1986. Control of breathing in ectothermic vertebrates. pp. 857–909.In: N.S. Cherniack & J.G. Widdicombe (ed.) Handbook of Physiology, Section 3: ‘The Respiratory System’ Vol. 2, American Physiological Society, American Physiological Society.Google Scholar
  68. Somero, G.N. 1986. Protons, osmolytes, and fitness of internal milieu for protein function. Amer. J. Physiol. 251: R197–R213.PubMedGoogle Scholar
  69. Steffensen, J.F. 1985. The transition between branchial pumping and ram ventilation in fishes: energetic consequences and dependence on water oxygen tension. J. Exp. Biol. 114: 141–150.Google Scholar
  70. Stevens, E.D. 1982. The effect of temperature on facilitated oxygen diffusion and its relation to warm tuna. Can. J. Zool. 60: 1148–1152.Google Scholar
  71. Stevens, E.D., How Man Lam & J. Kendall. 1974. Vascular anatomy of the counter-current heat exchanger of skipjack tuna. J. Exp. Biol. 61: 145–153.PubMedGoogle Scholar
  72. Sund, P.N., M. Blackburn & F. Williams. 1981. Tunas and their environment in the Pacific Ocean: a review. Oceanogr. Mar. Biol. Ann. Rev. 19: 443–512.Google Scholar
  73. Tetens, V. & N.J. Christensen. 1987. Beta-adrenergic control of blood oxygen affinity in acutely hypoxia exposed rainbow trout. J. Comp. Physiol. 157B: 667–675.Google Scholar
  74. Tota, B. 1978. Functional cardiac morphology and biochemistry in Atlantic bluefin tuna. pp. 89–112.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.Google Scholar
  75. Tota, B. 1983. Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp. Biochem. Physiol. 76A: 423–437.Google Scholar
  76. Walters, V. & H.L. Firestine. 1964. Measurements of swimming speeds of yellowfin tuna and wahoo. Nature 202: 208–209.Google Scholar
  77. Weber, J-M., R.W. Brill & P.W. Hochachka. 1986. Mammalian metabolic flux rates in a teleost: lactate and glucose turnover in tuna. Amer. J. Physiol. 250: R452–R458.PubMedGoogle Scholar
  78. White, F.C., R. Kelly, S. Kemper, P.T. Schumacker, K.R. Gallagher & R.M. Laurs. 1988. Organ blood flow heamodynamics and metabolism of the albacore tunaThunnus alalunga (Bonnaterre). Exp. Biol. 47: 161–169PubMedGoogle Scholar
  79. Wood, C.M. & S.F. Perry. 1985. Respiratory, circulatory, and metabolic adjustments to exercise in fish. pp. 2–22.In: R. Gilles (ed.) Circulation, Respiration, and Metabolism — Current Comparative Approaches, Springer-Verlag, Berlin.Google Scholar
  80. Yamamoto, K.I. & Y. Itazawa. 1989. Erythrocyte supply from the spleen of exercised carp. Comp. Biochem. Physiol. 92A: 139–144.Google Scholar
  81. Zubay, G.L. 1983. Biochemistry. Addison-Wesley, Reading, 1268 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Peter G. Bushnell
    • 1
  • David R. Jones
    • 2
  1. 1.Department of Biological SciencesIndiana University South BendSouth BendUSA
  2. 2.Department of ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations