Environmental Biology of Fishes

, Volume 40, Issue 3, pp 283–302

Endothermy in fishes: a phylogenetic analysis of constraints, predispositions, and selection pressures

  • Barbara A. Block
  • John R. Finnerty
Article

Synopsis

Endothermy, the ability to raise body temperature by internal heat production, is unusual in teleost fishes and has only been documented within one suborder, the Scombroidei. Two separate modes of endothermy have evolved in the scombroidei; tunas warm their muscles, brain and viscera using heat exchangers in the circulation to these metabolically active tissues while billfishes and one primitive mackerel have a thermogenic organ situated beneath the brain. Both modes of endothermy emphasize common themes. Large body size coupled with heat exchangers are necessary to reduce convective and conductive heat exchange. A tissue with a high oxidative capacity is required for heat generation. Studies based upon morphology and mitochondrial DNA analyses indicate that endothermy has evolved independently at least three times within the scombroid lineage. Mapping of-morphological and physiological traits on a molecular phylogeny for scombroids provides evidence of selective pressures favoring evolution of diverse endothermic styles. The new results suggest anatomical constraints prevent most fish from using the tuna form of endothermy and indicate a possible linkage between endothermy and locomotory style (thunniform or sub-carangiform).

Key words

Endothermy Phylogeny Character evolution Scombroidei Tunas Billfishes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Alexander, R.M. 1969. The orientation of muscle fibres in the myotomes of fishes. J. Mar. Biol. Assoc. U.K. 49: 263–290.Google Scholar
  2. Bach-y-Rita, R. & F. Ito. 1966. In vivo studies of fast and slow muscle fibers in cat extraocular muscle. J. Gen. Physiol. 49: 1177–1198.PubMedGoogle Scholar
  3. Baker, M.A. 1982. Brain cooling in endotherms in heat and exercise. Annual. Rev. Physiol. 44: 85–96.PubMedGoogle Scholar
  4. Ballantyne, J.S., M.E. Chamberlin & T.D. Singer. 1992. Oxidative metabolism in thermogenic tissues of swordfish and mako shark. J. Exp. Zool. 261: 110–114.Google Scholar
  5. Bennett, A.F. & J.A. Ruben. 1979. Endothermy and activity in vertebrates. Science 206: 649–653.PubMedGoogle Scholar
  6. Block, B.A. 1986. Structure of the brain and eye heater tissue in marlins, sailfish, and spearfishes. J. Morph. 190: 169–189.PubMedGoogle Scholar
  7. Block, B.A. 1987. Billfish brain and eye heater: a new look at nonshivering heat production. News in Physiological Sciences 2: 208–213.Google Scholar
  8. Block, B.A. 1990. Phylogeny and ecology of brain and eye heaters in billfishes. pp. 123–136.In: R.H. Stroud (ed.) Planning the Future of Billfishes, National Coalition for Marine Conservation, Savannah.Google Scholar
  9. Block, B.A. 1991. Endothermy in fish: thermogenesis, ecology and evolution. pp. 269–311.In: P.W. Hochachka & T. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, Vol 1, Elsevier, New York.Google Scholar
  10. Block, B.A. 1994. Thermogenesis in muscle. Annual Reviews of Physiology. 56: 535–577.Google Scholar
  11. Block, B.A. & F.G. Carey. 1985. Warm brain and eye temperatures in sharks. J. Comp. Physiol. B. 156: 229–236.PubMedGoogle Scholar
  12. Block, B.A. & C. Franzini-Armstrong. 1988. The structure of the membrane systems in a novel muscle cell modified for heat production. J. Cell Biol. 107: 1099–1112.PubMedGoogle Scholar
  13. Block, B.A., J.D. Finnerty, A.F.R. Stewart & J. Kidd. 1993. Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science 260: 210–214.PubMedGoogle Scholar
  14. Bone, Q. 1966. On the function of the two types of myotomal muscle fibres in elasmobranch fish. J. Mar. Biol. Assoc. U.K. 46: 321–349.Google Scholar
  15. Bone, Q. 1971. On the scabbard fish,Aphanopus carbo. J. Mar. Biol. Assoc. U.K. 51: 219–225.Google Scholar
  16. Bone, Q. & A.D. Chubb. 1983. The retial system of the locomotor muscles in the thresher shark. J. Mar. Biol. Assoc. U.K. 63: 239–241.Google Scholar
  17. Brooks, D.R. & D.A. Maclennan. 1991. Phylogeny, ecology, and behavior. A research program in comparative biology. University of Chicago Press, Chicago. 434 pp.Google Scholar
  18. Brill, R.W., D.L. Guernsey & E.D. Stevens. 1978. Body surface and gill heat loss rates in restrained skipjack tuna. pp. 261–276.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.Google Scholar
  19. Brill, R.W, H. Dewar & J.B. Graham. 1994. Basic concepts relevant and gill heat loss rates in restrained skipjack tuna. to heat transfer in fishes, and their use in measuring the physiological thermoregulatory abilities of tunas. Env. Biol. Fish. (in press).Google Scholar
  20. Bushnell, P.G., D.R. Jones & A.P. Farrell. 1992. The arterial system. pp. 89–139.In: W.S. Hoar, D.J. Randall & A.P. Farrell (ed) Fish Physiology, Vol 12, Academic Press, San Diego.Google Scholar
  21. Carey, F.G. 1982a. Warm fish. pp. 216–233.In: C.R. Taylor, K. Kohansen & L. Bolis (ed.) A Companion to Animal Physiology, Cambridge University Press, Cambridge.Google Scholar
  22. Carey, F.G. 1982b. A brain heater in the swordfish. Science 216: 1327–1329.PubMedGoogle Scholar
  23. Carey, F.G. 1990. Further observations on the biology of the swordfish. pp. 103–122.In: R.H. Stroud (ed.) Planning the Future of Billfishes, National Coalition for Marine Conservation, Savannah.Google Scholar
  24. Carey, F.G. & J.M. Teal. 1966. Heat conservation in tuna fish muscle. Proc. Natl. Acad. Sci. U.S.A. 56: 1464–1469.Google Scholar
  25. Carey, F.G., J.M. Teal, J.W. Kanwisher & K.D. Lawson. 1971. Warm-bodied fish. Amer. Zool. 11: 137–145.Google Scholar
  26. Carey, F.G., J.M. Teal & J.W. Kanwisher. 1981. The visceral temperatures of mackerel sharks. Physiol. Zool. 54: 334–344.Google Scholar
  27. Carey, F.G., J.G. Casey, H.L. Pratt, D. Urkuhart & J.E. McCosker. 1985. Temperature, heat production and heat exchange in lamnid sharks. Memoirs of the Southern California Academy of Science 9: 92–108.Google Scholar
  28. Carey, F.G. & Q. Gibson. 1987. Blood flow in the muscle of free-swimming fish. Physiol. Zool. 60: 138–148.Google Scholar
  29. Carey, F.G. & J.V. Scharold. 1990. Movements of blue sharks in course and depth. Mar. Biol. 106: 329–342.Google Scholar
  30. 1978. Adaptations and systematics of the mackerels and tunas. pp. 7–40.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.Google Scholar
  31. Collette, B.B., T. Potthoff, W.J. Richards, S. Ueyanagi, J.L. Russo & Y. Nishikawa. 1984. Scombroidei: development and relationships. pp. 591–620.In: H.G. Moser et al. (ed.) Ontogeny and Systematics of Fishes, Special Publication No. 1, American Society of Ichthyologists and Herpetologists, LawrenceGoogle Scholar
  32. Compagno, L.G.V. 1984. Sharks of the world. FAO Fisheries Synopsis No. 125, 4: 1–655.Google Scholar
  33. Crompton, A.W, C.R. Taylor & J.A. Jagger. 1978. Evolution of homeothermy in mammals. Nature 272: 333–336.PubMedGoogle Scholar
  34. Dean, J.M. 1976. Temperature of tissues in freshwater fishes. Trans. Amer. Fish. Soc. 6: 709–711.Google Scholar
  35. Denton, R.M. & J.G. McCormack. 1990. Ca2+ as a second messenger within mitochondria of the heart and other tissues. Ann. Rev. Physiol. 52: 451–466.Google Scholar
  36. Dickson, K.A. 1988. Why are some fishes endothermic? Inter-specific comparisons of aerobic and anerobic metabolic capacities in endothermic and ectothermic scombrids. Ph.D. Dissertation, University of California, San Diego. 358 pp.Google Scholar
  37. Dickson, K.A., A.V. Dall, J.M. Eisman, E.T. McDonnell & A.M. Hendrzak. 1988. Biochemical indices of aerobic and anaerobic capacity in red and white myotomal muscle of active, pelagic sharks: comparisons between endothermic and ectothermic species. Journal of the Pennsylvania Academy of Science 62 (3): 147–151.Google Scholar
  38. Dickson, K.A. 1994. Unique adaptations of the metabolic biochemistry of tunas and billfishes for life in the pelagic environment. Env. Biol. Fish. (in press).Google Scholar
  39. Finnerty, J.R. & B.A. Block. Evolution of cytochrome b in Scombroidei (Teleostei); insights into billfish relationships. U.S. Fish. Bull. (in press).Google Scholar
  40. Gibbs, R.H. & B.B. Collette. 1967. Comparative anatomy and systematics of the tunas, genusThunnus. U.S. Fish Bull. 66: 65–130.Google Scholar
  41. Graham, J.B. 1975. Heat exchange in the yellowfin tuna,Thunnus albacares, and skipjack tuna,Katsuwonus pelamis, and the adaptive significance of elevated body temperatures in scombrid fishes. U.S. Fish. Bull. 73: 219–229.Google Scholar
  42. Graham, J.B. 1983. Heat transfer. pp. 248–279.In: P.W. Webb & D. Weihs (ed.) Fish Biomechanics, Praeger Publishers, New York.Google Scholar
  43. Graham, J.B., F.J. Koehrn & K.A. Dickson. 1983. Distribution and relative proportions of red muscle in scombrid fishes: consequences of body size and relationships to locomotion and endothermy. Can. J. Zool. 61: 2087–2096.Google Scholar
  44. Guppy, M., W.C. Hulbert & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. II. Enzyme and metabolite profiles. J. Exp. Biol. 82: 303–320.PubMedGoogle Scholar
  45. Hebrank, J.H., M.R. Hebrank, J.H. Long, B.A. Block & S.A. Wainwright. 1990. Backbone mechanics of the blue marlinMakaira nigricans (Pisces, Istiophoridae). J. Exp. Biol. 148: 449–459.Google Scholar
  46. Himms-Hagen, J. 1991. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 4: 2890–2898.Google Scholar
  47. Hochachaka, P.W. & R.W. Brill. 1987. Autocatalytic pathways to cell death: a new analysis of the tuna burn problem. Fish Physiol. Biochem. 4: 81–87.Google Scholar
  48. Holland, K.N., R.W. Brill, R.K.C. Chang, J.R. Sibert & D.A. Fournier. 1992. Physiological and behavioral thermoregulation in bigeye tune (Thunnus obesus) Nature 358: 410–412.PubMedGoogle Scholar
  49. Huey, R.B. 1987. Phylogeny, history, and the comparative method. pp. 76–98.In: M.E. Feder, A.F. Bennett, W.W. Burggren & R.B. Huey (ed.) New Directions in Physiological Ecology, Cambridge University Press, CambridgeGoogle Scholar
  50. Hulbert, W.C., M. Guppy, B. Murphy & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. I. Muscle fine structure. J. Exp. Biol. 82: 289–301.PubMedGoogle Scholar
  51. Johnson, G.D. 1986. Scombroid phylogeny: an alternative hypothesis. Bull. Mar. Sci. 39: 1–41.Google Scholar
  52. Lindsey, C.C. 1978. Form, function, and locomotory habits in fish. pp. 1–100.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 7, Academic Press, New York.Google Scholar
  53. Linthicum, D.S. & F.G. Carey. 1971. Regulation of brain and eye temperatures by the bluefin tuna. Comp. Biochem. Physiol. 43A: 425–433.Google Scholar
  54. Maddison, W.P. & D.R. Maddison. 1992. MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland. 398 pp.Google Scholar
  55. Martin, A.P, G.J.P. Naylor & S.R. Palumbi. 1992. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357: 153–155.PubMedGoogle Scholar
  56. MacClennan, D.H. & M.S. Phillips. 1992. Malignant hyperthermia. Science 256: 789–794.PubMedGoogle Scholar
  57. Moyes, C.D., O.A. Mathieu-Costello, R.W. Brill & P.W. Hochachka. 1992. Can. J. Zool. 70: 1246–1253.Google Scholar
  58. Neill, W.H. & E.D. Stevens. 1974. Thermal inertia versus thermoregulation in ‘warm’ turtles and tunas. Science 184: 1008–1010.PubMedGoogle Scholar
  59. Neill, W.H., R.K. Chang & A.E. Dizon. 1976. Magnitude and ecological importance of thermal inertia in skipjack tuna,Katsuwonnus pelamis (Linneaus). Env. Biol. Fish. 1: 61–80.Google Scholar
  60. O'Brien, J., A. Tullis & B.A. Block. 1992. Role of mitochondria in heat production by a muscle derived thermogenic organ in fish. Biophys. J. 61: A297.Google Scholar
  61. O'Brien, J., G. Meissner & B.A. Block. 1994. The fastest contracting muscles of non-mammalian vertebrates express only one isoform of the ryanodine receptor. Biophysical J. 65: 2418–2427.Google Scholar
  62. Prosser, C.L. & C.O. Nelson. 1981. The role of nervous systems in temperature adaptation of poikilotherms. Ann. Rev. Physiol. 43: 281–300.Google Scholar
  63. Rayner, M.D. & M.J. Keenan. 1967. Role of red and white muscles in the swimming of skipjack tuna. Nature 214: 392–393.PubMedGoogle Scholar
  64. Ridley, M. 1983. The explanation of organic diversity: the comparative method and adaptations for mating. Clarendon Press, Oxford. 272 pp.Google Scholar
  65. Rome, L.C., R.P. Funke, R.M. Alexander, G. Lutz, H.D.J.N. Aldridge, F. Scott & M. Freadman. 1988. Why animals have different muscle fiber types. Nature 355: 824–827.Google Scholar
  66. Sharp, G.D. & S.W. Pirages. 1978. The distribution of red and white swimming muscle, their biochemistry and the biochemistry phylogeny of selected scombrid fishes. pp. 41–78.In: G. Sharp & A. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.Google Scholar
  67. Sidell, B.D. & T.S. Moerland. 1989. Effects of temperature on muscular function and locomotory performance in teleost fish. pp. 115–156.In: C. Magnum (ed.) Advances in Comparative and Environmental Physiology, Vol. 5, Springer-Verlag, Berlin.Google Scholar
  68. Sidell, B.D., W.R. Driedzic, D.B. Stowe & I.A. Johnston. 1987. Biochemical correlations of power development and metabolic fuel preferenda in fish hearts. Physiol. Zool. 60: 221–232.Google Scholar
  69. Stevens, E.D. & F.E. Fry. 1971. Brain and muscle temperatures in ocean caught and captive skipjack tuna. Comp. Biochem. Physiol. 1971: 203–211.Google Scholar
  70. Stevens, E.D. & F. G. Carey. 1981. One why of the warmth of warm-bodied fish. Amer. J. Physiol. 240: R151–R155.Google Scholar
  71. Suarez, R.K., M.D. Mallet, C. Daxboeck & P.W. Hochachka. 1986. Enzymes of energy metabolism and gluconeogenesis in the Pacific blue marlin,Makaira nigricans. Can. J. Zool. 64: 694–697.Google Scholar
  72. Tullis, A., B.A. Block & B.D. Sidell. 1991. Activities of key metabolic enzymes in the heater organs of scombroid fishes. J. Exp. Biol. 161: 383–403.PubMedGoogle Scholar
  73. Tullis, A. & B.a. Block. 1992. On the origin of the billfish heater cell phenotype. Amer. Zool. 32: 68A.Google Scholar
  74. Watson, C., R.E. Bourke & R.W. Brill. 1988. A comprehensive theory on the etiology of burnt tuna. U.S. Fish. Bull. 86: 372–376.Google Scholar
  75. Westneat, M.W. W. Hoese, C.A. Pell & S.A. Wainwright. 1993. Locomotor mechanisms of force transfer in the horizontal septum of scombrid fishes. J. Morphol. 217: 183–204.Google Scholar
  76. White, F.C., R. Kelly, S. Demper, P.T. Schumacker, K.R. Gallagher & R.M. Laurs. 1988. Organ blood flow hemnodynamics and metabolism of the albacore tunaThunnus alalunga (Bonnaterre). Exp. Biol. 47: 161–169.PubMedGoogle Scholar
  77. Wolf, N.G., P.R. Swift & F.G. Carey. 1988. Swimming muscle helps warm the brain of lamnid sharks. J. Comp. Physiol. B. 157: 709–715.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Barbara A. Block
    • 1
  • John R. Finnerty
    • 1
  1. 1.Department of Organismal Biology and AnatomyThe University of ChicagoChicagoUSA
  2. 2.Hopkins Marine StationStanford UniversityPacific GroveUSA

Personalised recommendations