Advertisement

Environmental Biology of Fishes

, Volume 43, Issue 2, pp 179–185 | Cite as

Chemoattraction of upstream migrating glass eelsAnguilla anguilla to earthy and green odorants

  • Carla Sola
Article

Synopsis

The study investigates the sensitivity and the chemotaxis of glass eels caught during upstream migration with respect to freshwater solutions of 8 pure chemicals with earthy or green odour: 2-methyl-3-methoxypyrazine; 2-isobutyl-3-methoxypyrazine; 4-methylthiazole; 4-isopropyl-7-methylcyclohexathiazole; 1,2,2,6-tetramethylcyclohexanol; 1-ethyl-2,2,6-trimethylcyclohexanol; (L) and (D) 2-methylfenchol. All the tested substances are potent stimuli. Extremely low concentrations (ranging between 10-9 and 10-13 mg 1-1) are sufficient to elicit a choice in the fish. These chemicals, all of which are clearly attractive, could act as kairomones and play a fundamental orienting role in the upstream migration of glass eels.

Key words

Chemoreception Kairomones Migration Attraction Catadromy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Atema, J., S. Jacobson, J. Todd & D. Boylan. 1973. The importance of chemical signals in stimulating behavior of marine organisms: effects of altered environmental chemistry on animal communication. pp. 177–197.In.: G.E. Glass (ed.) Bioassay Techniques and Environmental Chemistry, Mich. Sci. Publ., Ann Arbor.Google Scholar
  2. Boëtius, J. 1976. Elvers,Anguilla anguilla andAnguilla rostrata from two Danish localities. Size, body weight, developmental stage and number of vertebrae related to time of ascent. Meddr. Danm. Fisk. og Havunders 7: 199–220.Google Scholar
  3. Brown, W.L., T. Eisner & R.M. Whittaker. 1970. Allomones and kairomones: transspecific chemical messengers. BioScience 20: 21–22.Google Scholar
  4. Buttery, D.G., R.M. Seifert, D.G. Guadagni & L.C. Ling. 1969. Characterization of some volatile constituents of bell pepper. J. Agric. Food Chem. 17: 1322–1327.Google Scholar
  5. Creutzberg, F. 1961. On the orientation of migrating elvers (Anguilla vulgaris Turt.) in a tidal area. Neth. J. Sea Res. 1: 257–338.Google Scholar
  6. Finato, B., R. Lorenzi & P. Pelosi. 1992. Synthesis of new earthy odorants. J. Agric. Food Chem. 40: 857–859.Google Scholar
  7. Gerber, N.N. 1968. Geosmin, from microorganisms, istrans-1,10-dimethyl-trans-9-decalol. Tetrahedron Letters 25: 2971–2974.Google Scholar
  8. Gerber, N.N. & H.A. Lechevalier. 1965. Geosmin, an earthysmelling substance isolated from actinomycetes. Appl. Environ. Microbiol. 13: 935–938.Google Scholar
  9. Hara, T.J. 1992. Mechanisms of olfaction. pp. 150–170.In: T.J. Hara (ed.) Fish Chemoreception, Chapman & Hall, London.Google Scholar
  10. Hara, T.J. 1994. The diversity of chemical stimulation in fish olfaction and gustation. Rev. Fish Biol. Fish. 4: 1–35.Google Scholar
  11. Hasler, A.D. & A.T. Scholz. 1983. Olfactory imprinting and homing in salmon. Investigations into the mechanisms of the imprinting process. Springer-Verlag, Heidelberg. 134 pp.Google Scholar
  12. Hasler, A.D. & W.J. Wisby. 1951. Discrimination of stream odors by fishes and its relation to parent stream behavior. Amer. Nat. 85: 223–238.Google Scholar
  13. Hwang, C.J., S.W. Krasner, M.J. McGuire, M.S. Moylan & M.S. Dale. 1984. Determination of subnanogram per liter levels of earthy-musty odorants in water by the salted closed-loop stripping method. Environ. Sci. Technol. 18: 535–539.Google Scholar
  14. Jüttner, F. 1984. Dynamics of the volatile organic substances associated with cyanobacteria and algae in a eutrophic shallow lake. Appl. Environ. Microbiol. 47: 814–820.Google Scholar
  15. Kawamura, G., H. Nakaizumi & T. Motohiro. 1992. Chemical perception and response of the Nile tilapia to geosmin. Water Sci. Technol. 25: 277–282.Google Scholar
  16. Marui, T. & J. Caprio. 1992. Teleost gustation. pp. 171–198.In: T.J. Hara (ed.) Fish Chemoreception, Chapman & Hall, London.Google Scholar
  17. Medsker, L.L., D. Jenkins & S.F. Thomas. 1968. Odorous compounds in natural waters. An earthy-smelling compound associated with blue-green algae and actinomycetes. Environ. Sci. Technol. 2: 461–464.Google Scholar
  18. Miles, S.G. 1968. Rheotaxis of elvers of the American eel (Anguilla rostrata) in the laboratory to water from different streams in Nova Scotia. J. Fish. Res. Board Can. 25: 1591–1602.Google Scholar
  19. Murray, K.E. & F.B. Whitfield. 1975. The occurrence of 3-alkyl-2-methoxypyrazines in raw vegetables. J. Sci. Food Agric. 26: 973–986.Google Scholar
  20. Northcote, T.G. 1984. Mechanisms of fish migration in rivers. pp. 317–355.In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed.) Mechanisms of Migration in Fishes, Plenum Press, New York.Google Scholar
  21. Pelosi, P. 1989. Towards an objective evaluation of odours in foods. Ital. J. Food Sci. 1: 5–22.Google Scholar
  22. Pelosi, P & R. Tirindelli. 1989. Structure/activity studies and characterization of an odorant-binding protein. pp. 207–226.In: J.G. Brandt, J.H. Teeter, R.H. Cagan & M.R. Kare (ed.) Chemical Senses, Vol 1, Receptors Event and Transduction in Taste and Olfaction, M. Dekker, New York.Google Scholar
  23. Pelosi, P, P. Pasqualetto & R. Lorenzi. 1983. Synthesis and olfactory properties of some thiazoles with bell pepper like odor. J. Agric. Food Chem. 31: 482–484.Google Scholar
  24. Persson, P.E. & F. Jüttner. 1983. Threshold odour concentrations of odorous algal metabolites occurring in lake water. Aqua Fennica 13: 3–7.Google Scholar
  25. Persson, P.E., F.B. Whitfield & S.W. Krasner. 1992. Off-flavour in drinking water and aquatic organisms. Wat. Sci. Tech. 25, Pergamon Press, Oxford. 343 pp.Google Scholar
  26. Smith, R.J.F. 1985. The control of fish migration. Springer-Verlag, Berlin. 243 pp.Google Scholar
  27. Sola, C. & L. Tosi. 1993. Bile salts and taurine as chemical stimuli for glass eels,Anguilla anguilla: a behavioural study. Env. Biol. Fish. 37: 197–204.Google Scholar
  28. Sola. C., P.G. Giulianini & E.A. Ferrero. 1993a. Ultrastructural characterization of the olfactory organ in glass eels,Anguilla anguilla (Osteichthyes, Anguilliformes). Boll. Zool. 60: 253–261.Google Scholar
  29. Sola, C., A. Spampanato & L. Tosi. 1993b. Behavioural responses of glass-eels (Anguilla anguilla L.) towards amino acids. J. Fish Biol. 42: 683–691.Google Scholar
  30. Sorensen, P.W. 1986. Origins of the freshwater attractant(s) of migrating elvers of the American eelAnguilla rostrata. Env. Biol. Fish. 17: 185–200.Google Scholar
  31. Sorensen, P.W. 1992. Hormones, pheromones and chemoreception. pp. 199–228.In: T.J. Hara (ed.) Fish Chemoreception, Chapman & Hall, London.Google Scholar
  32. Stabell, O.B. 1992. Olfactory control of homing behaviour in salmonids. pp. 249–270.In: T.J. Hara (ed.) Fish Chemoreception, Chapman & Hall, London.Google Scholar
  33. Thunberg, B.E. 1971. Olfaction in parent stream selection by the alewife (Alosa pseudoharengus). Anim. Behav. 19: 217–225.PubMedGoogle Scholar
  34. Tosi, L. & C. Sola. 1993. Role of geosmin, a typical inland water odour, in guiding glass eelsAnguilla anguilla (L.) migration. Ethology 95: 177–185.Google Scholar
  35. Tosi. L., A. Spampanato, C. Sola & P. Tongiorgi. 1990. Relation of water odour, salinity and temperature to ascent of glasseels,Anguilla anguilla (L.): a laboratory study. J. Fish Biol. 36: 327–340.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Carla Sola
    • 1
  1. 1.Dipartimento di Biologia AnimaleUniversitá di Modena, via Università 4ModenaItaly

Personalised recommendations