Environmental Biology of Fishes

, Volume 26, Issue 1, pp 1–27

The habitat diversity and fish reproductive function of floodplain ecosystems

  • Gordon H. Copp
Article

Synopsis

Fish reproduction in floodplain ecosystems, based on relative abundance and total biomass of 0+ juveniles, was studied using the synchronic approach to typological analysis in conjunction with Point Abundance Sampling by modified electrofishing. In 3 different flood plains of the Upper Rhône River, 1015 point samples yielding 4573 juveniles (0+) from 21 species were collected from 48 ecosystems of various geomorphological origin. The results demonstrate the lotic-to-lentic succession of floodplain ecosystems to be a series of non-sequential reproductive zones, with spawning conditions being reflected by the specific composition and guild structure of the YOY fish assemblages. The habitat diversity and the fish reproductive potential of floodplain ecosystems are strongly influenced by geomorphological origin and by past and present hydrological conditions. The YOY assemblages of autogenically driven ecosystems (usually of anastomose or meander origin) tend to differ both in composition and in quantity from those found in allogenically driven ecosystems (generally of braided origin). Ecosystems of intermediate character, and fish reproduction thereof, occur as the result of either ecosystem rejuvenation or senescence: autogenically driven ecosystems by allogenic mechanisms, or allogenically driven ecosystems by anthropic and/or autogenic mechanisms, respectively. Because of co-occurrence of ecosystems at similar and at different successional status, the flood plain as an entity is seen as ‘stable’ with respect to fish reproduction.

Key words

Rhône River Zonation Introduced species Ecological succession Assemblage structure YOY Developmental thresholds Multivariate analysis Electrofishing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Ain, G., B. Gilot, M.C. Neuburger, G. Pautou, J. Tetart & J. Thomas. 1973. Etude écologique des anciens lits du Rhne entre le confluent de Guiers et le confluent de l'Ain. Université de Grenoble, Grenoble. 75 pp.Google Scholar
  2. Amoros, C., M. Richardot-Coulet & G. Pautou. 1982. Les ‘ensembles fonctionnels’ des entités écologiques qui traduisent l'évolution de l'hydrosystème en intégrant la géomorphologie et l`anthropisation (exemple du Haut-Rhne français). Revue Géographique de Lyon 57: 49–62.Google Scholar
  3. Amoros, C., J.-P. Bravard, C. Castella, E. Castella, J. Girel, C. Jacquet, G. Pautou, J.-L. Reygrobellet, M. Richardot-Coulet, P. Richoux, A.L. Roux & C. Roux. 1986. Recherches interdisciplinaires sur les écosystèmes de la basse-plaine de l'Ain (France: potentialités évolutives et gestion. Documents de Cartographie Ecologique XXIX, Univ. Sci. Technol. et Médicale de Grenoble, Grenoble, 166 pp.Google Scholar
  4. Amoros, C., J.-C. Rostan, G. Patou & J.-P. Bravard. 1987a. The reversible process concept applied to the environmental management of large river systems. Env. Mgmt. 11: 607–618.CrossRefGoogle Scholar
  5. Amoros, C., A.L. Roux, J.-L. Reygrobellet, J.-P. Bravard & G. Pautou. 1987b. A method for applied ecological studies of fluvial hydrosystems. Regulated Rivers 1: 17–36.Google Scholar
  6. Amundrud, J.R., D.J. Faber & A. Keast. 1974. Seasonal succession of free-swimming Perciform larvae in Lake Opinicon, Ontario. J. Fish. Res. Board Can. 31: 1661–1665.Google Scholar
  7. Antipa, G. 1928. Die biologischen Grundlagen und der Mechanismums der Fischproduktion in den Gewässern der unteren Donau. Bull. Sect. Sci. Acad. Roumaine 11: 1–20.Google Scholar
  8. Auda, I. 1983. Rôle des méthodes graphiques en analyse des données: application au dépouillement des enquêtes écologiques. Thèse de Doctorat, Université Claude Bernard, Lyon. 129 pp.Google Scholar
  9. Auda, I. 1984. Logiciel graphique pour l'analyse des données (Fortran 77). Doc. Lab. Biom. Univ. C. Bernard, Lyon. 107 pp.Google Scholar
  10. Bacalbasa-Dobrovici, N. 1988. The Danube and its fisheries. Can. J. Fish. Aquat. Sci. (in press).Google Scholar
  11. Bain, M.B., J.T. Finn & H.E. Brooke. 1988. Streamflow regulation and fish community structure. Ecology 69: 382–392.Google Scholar
  12. Balon, E.K. 1959. Spawning of Lepomis gibbosus (L.) acclimatized in the back waters of the Danube and its development during the embryonic period. Věst. Česk. Spol. Zool. 23: 1–22. (In Slovak).Google Scholar
  13. Balon, E.K. 1966. Contribution to the knowledge of balanced fish taxocenes in inundation waters of the Danube River. Biologia (Bratislava) 21: 865–884. (In Slovak).Google Scholar
  14. Balon, E.K. 1967. The ichthyofauna of the longitudinal and transverse profile of the Czechoslovak sector of the Danube, specific and quantitative changes of the fish populations and their conservation. Cěsk. Ochr. Prir. 3: 203–229. (In Slovak).Google Scholar
  15. Balon, E.K. 1984. Patterns in the evolution of reproductive styles in fishes. pp. 35–53. In: G.W. Potts & R.J. Wootton (ed.) Fish Reproduction: Strategies and Tactics, Academic Press, London.Google Scholar
  16. Balon, E.K. 1985. The theory of saltatory ontogeny and life history models revisited. pp. 13–28. In: E.K. Balon (ed.) Early Life Histories of Fishes, New Developmental, Ecological and Evolutionary Perspectives, Dev. Env. Biol. Fish. 5, Dr W. Junk Publishers, Dordrecht.Google Scholar
  17. Balon, E.K. & D.J. Stewart. 1983. Fish assemblages in a river with unusual gradient (Luongo, Africa - Zaire system), reflections on river zonation, and description of another new species. Env. Biol. Fish. 9: 225–252.CrossRefGoogle Scholar
  18. Banbura, J., Przybylski & M. Zalewski. 1985. Spatial and seasonal dynamics of fish communities in the Grabia and Lubrzanka Rivers. pp. 69–81 In: M. Zalewski (ed.) Conservation and Fishery Management of Small River Systems, Univ. Lódź, Polski Zwizek Wdkarski, Lódź-Warszawa. (In Polish).Google Scholar
  19. Beecher, H.A., W.C. Hixson & T.S. Hopkins. 1977. Fishes of a Florida oxbow lake and its parent river. Florida Sci. 40: 140–148.Google Scholar
  20. Borne, V.D.M. 1877. Wie kann man unsere Gewässer nach den in ihnen vorkommenden Arten klassifizieren. Cirk. Dt. Ver. 4 (orig. not seen, from Nowicki 1889).Google Scholar
  21. Botnariuc, N. 1967. Some characteristic features of the floodplain ecosystems of the Danube. Hidrobiologia 8: 39–50.Google Scholar
  22. Bournaud, M. & C. Amoros. 1984. Des indicateurs biologiques aux descripteurs de fonctionnement: quelques exemples dans un système fluvial. Bull. Ecol. 15: 57–66.Google Scholar
  23. Bravard, J.-P. 1987. Le Rhne, du Léman á Lyon. La Manufacture, Lyon. 451 pp.Google Scholar
  24. Bravard, J.-P., C. Amoros & G. Pautou. 1986. Impact of civil engineering works on the successions of communities in a fluvial system. Oikos 47: 92–111.Google Scholar
  25. Bruton, M.N. & P.B.N. Jackson. 1983. Fish and fisheries of wetlands. J. Limnol. Soc. S. Afr. 9: 123–133.Google Scholar
  26. Carrel, G. 1986. Caracterisation physico-chimique du Haut-Rhône français et de ses annexes; incidences sur la croissance des populations d'alevins. Thèse de Doctora, Université Claude Bernard, Lyon. 185 pp.Google Scholar
  27. Castella, E. 1987. Apport des macroinvertébrés aquatiques au diagnostic écologiques des écosystèmes abandonnés par les fleuves. Recherches méthodologiques sur le Haut-Rhône français. Thèse de Doctorat, Université Claude Bernard, Lyon. 462 pp.Google Scholar
  28. Castella, E., M. Richardot-Coulet, C. Roux & P. Richoux. 1984. Macroinvertebrates as ‘describers’ of morphological and hydrological types of aquatic ecosystems abandoned by the Rhne River. Hydrobiologia 119: 219–225.CrossRefGoogle Scholar
  29. Chessel, D. 1978. Description non paramétrique de la dispersion spatiale des individus d'une espèce. pp. 45–135. In: J.M. Legay & R. Tommassone (ed.) Biométrie et Ecologie, Soc. fr. Biométrie.Google Scholar
  30. Copp, G.H. 1987. Le rôle et le fonctionnement des milieux aquatiques du Haut-Rhône français comme site de reproduction et de nurserie pour les poissons du fleuve. Thèse de Doctorat, Université Claude Bernard, Lyon. 97 pp.Google Scholar
  31. Copp, G.H. & M. Peňáz. 1988. Ecology of fish spawning and nursery zones in the flood plain, using a new sampling approach. Hydrobiologia (in press).Google Scholar
  32. Copp, G.H. & B. Cellot. 1988. Drift of embryonic and larval fishes, especially Lepomis gibbosus (L.), in the Upper Rhne River. J. Freshwat. Ecol. 4: 419–424.Google Scholar
  33. Dole, M.-J. 1983. Le domaine aquatique souterrain de la plaine alluviale du Rhne à l'est de Lyon. Vie et milieu. 33: 219–229.Google Scholar
  34. Ellis, J.M., G.B. Farabee & J.B. Reynolds. 1979. Fish communities in three successional stages of side channels in the Upper Mississippi River. Trans. Missouri Acad. Sci. 13: 5–20.Google Scholar
  35. Estève 1978. Les méthodes d'ordination: éléments pour une discussion. pp. 223–250. In: J.M. Legay & R. Tomassone (ed.) Biométrie et Ecologie, Societé français de Biométrie.Google Scholar
  36. Frič, A. 1872. Die Wirbeltiere Böhmens. Prag. Arch. Naturw. Landesderchforschung v. Böhmen 2: 1–152.Google Scholar
  37. Frissel, C.A., W.J. Liss, C.E. Warren & M.D. Hurley. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Env. Mgmt. 10: 199–214.CrossRefGoogle Scholar
  38. Gauch, H.G. Jr. 1982. Multivariate analysis in community ecology. Cambridge University Press, London. 298 pp.Google Scholar
  39. Gregory, R.S. & P.M. Powles. 1985. Chronology, distribution, and sizes of larval fish samples by light traps in macrophytic Chemung Lake. Can. J. Zool. 63: 2569–2577.Google Scholar
  40. Grossman, G.D., P.B. Moyle & J.O. Whitaker. 1982. Stochasticity in structural and functional characteristics of an Indiana stream fish assemblage: a test of community theory. Amer. Nat. 120: 423–454.CrossRefGoogle Scholar
  41. Grohs, H. 1943. Limnologische Untersuchung zweier Donaualtwässer bei Wien. Arch. Hydrobiol. 39: 369–402.Google Scholar
  42. Halyk, L.C. & E.K. Balon. 1983. Structure and ecological production of the fish taxocene of a small floodplain system. Can J. Zool. 61: 2446–2464.Google Scholar
  43. Heeg, J. & C.M. Breen. 1982. Man and the Pongolo floodplain. S. African. Nat Sci. Prog. Report N°56, Pretoria. 117 pp.Google Scholar
  44. Hellman, G.S. 1978. Patterns of community structure in fishes: summary and overview. Env. Biol. Fish. 3: 129–148.CrossRefGoogle Scholar
  45. Holčík, J. 1988. Some aspects of fish production in streams with particular reference to flood plain rivers. Can J. Fish. Aquat. Sci. (in press).Google Scholar
  46. Holčík, J. & T. Kmet. 1986. Simple models of the population dynamics of some fish species from the lower reaches of the Danube. Folia Zool. 35: 183–191.Google Scholar
  47. Holland, L.E. & M.L. Huston. 1984. Relations of young-of-the-year northern pike to aquatic vegetation types in backwaters of the Upper Mississippi River. N. Amer. J. Fish. Mgmt. 4: 514–522.CrossRefGoogle Scholar
  48. Holland, L.E. & J.R. Sylvester. 1983. Distribution of larval fishes related to potential navigation impacts on the Upper Mississippi River, Pool 7. Trans. Amer. Fish. Soc. 112: 293–301.CrossRefGoogle Scholar
  49. Huet, M. 1949. Aperçu des relations entre la pente et les populations piscicoles des eaux courantes. Schweiz. Zeit. Hydrol. 11: 332–351.Google Scholar
  50. Illies, J. & L. Botosaneanu. 1963. Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considerées surtout du point de vue faunistique. Mitt. int. Ver. Limnol. 12: 1–57.Google Scholar
  51. Junk, W.J., G.M. Soares & F.M. Carvalho. 1983. Distribution of fish species in a lake of the Amazon River floodplain near Nanaus (Lago Camaleao), with special reference to extreme oxygen conditions. Amazoniana 7: 397–431.Google Scholar
  52. Keast, A. 1978. Trophic and spatial interrelationships in the fish species of an Ontario temperate lake. Env. Biol. Fish. 3: 7–31.CrossRefGoogle Scholar
  53. Keast, A. 1980. Food and feeding relationships of young fish in the first weeks after the beginning of exogenous feeding in Lake Opinicon, Ontario. Env. Biol. Fish. 5: 305–314.CrossRefGoogle Scholar
  54. King, C.E. 1964. Relative abundance of species and MacArthur's model. Ecology 45: 716–727Google Scholar
  55. Kinzelbach, R. 1976. Das Naturschutzgebiet ‘Hördter Rheinaue’ bei Germersheim. Einführung in Ökographie, ökologie, Pflege und Ausbau. Mitt. Pollichia. 63: 5–62.Google Scholar
  56. Kitchell, J.F., M.G. Johnson, C.K. Minns, K.H. Loftus, L. Greig & C.H. Olver. 1977. Percid habitat: the river analogy. J. Fish. Res Board Can. 34: 1936–1940.Google Scholar
  57. Koblickaja, A.P. 1981. Key for identifying young freshwater fishes. Light and Food Industrial Publ. House, Moscow. 208 pp. (In Russian).Google Scholar
  58. Koeppen, E. 1943. Verzeichnis der im Naturkunde-Museum zu Litzmannstadt gesammelten und beobachteten Wirbeltiere des Litzmannstädter Raumes, Lódz. 43 pp.Google Scholar
  59. Kruedener, A. von. 1926. Waldtypen als kleinste natürliche Landschaftseinheiten bzw. Mikrolandschaftstypen. Petermanns geogr. Mitt. 72: 150–158.Google Scholar
  60. Kryzhanovsky, S.G. 1949. Eco-morphological principles and patterns of development among minnows, loaches and catfishes. Part II: Ecological groups of fishes and patterns of their distribution. (Translation: Fish. Res. Board Can. Trans. Series N°2945, 1974).Google Scholar
  61. Kushlan, J.A. 1976. Environmental stability and fish community diversity. Ecology 57: 821–825.Google Scholar
  62. Lange, N.O. & Ye.N. Dmitriyeva. 1973. Some characteristics of the effect of similar environmental factors on juvenile fishes of different ecological groups. J. Ichthyol. 13: 899–908.Google Scholar
  63. Léger, L. 1945. Economie biologique et productivité de nos rivières á cyprinides. Bull. français de Pisculture 139: 49–69.Google Scholar
  64. Mahon, R. 1984. Divergent structure in fish taxocenes of north temperate streams. Can. J. Fish. Aquat. Sci. 41: 330–350.Google Scholar
  65. Markus, E. 1926. Verschiebung der Naturkomplexe in Europa. Geogr. Z. 32: 516–541.Google Scholar
  66. Mathews, C.P. 1971. Contribution of young fish to total production of fish in the River Thames near Reading. J. Fish Biol. 3: 157–180.Google Scholar
  67. Mills, C.A. & R.H.K. Mann. 1985. Environmentally-induced fluctuations in year-class strength and their implications for management. J. Freshwat. Biol. 27: 209–226.Google Scholar
  68. Minshall, G.W., K.W. Cummins, R.C. Petersen, C.E.. Gushing, D.A. Bruns, J.R. Sedell & R.L. Vannote. 1985. Developments in stream ecosystem theory. Can. J. Fish Aquat. Sci. 42: 1045–1055.Google Scholar
  69. Mitis, H. von. 1938. Das Altwasser. Arch Hydrobiol. 34: 143–153.Google Scholar
  70. Nelva, A., H. Persat & D. Chessel. 1979. Une nouvelle méthode d'étude des peuplements ichtyologiques dans les grands cours d'eau par échantillonnage ponctuel d'abondance. C.R. Acad. Sci. Paris. t. 289. Série D: 1295–1298.Google Scholar
  71. Nowicki, M. 1868. Report of the physiography Commission (orig. not seen, from Nowicki 1889).Google Scholar
  72. Nowicki, M. 1889. Fishes of river systems of Wisla, Styr, Dniestr and Prut in Galicja. Kraków, Wydz, Krajowy, Poland. 54 pp. (In Polish).Google Scholar
  73. Pawłowski, L.K. 1958. Rotatoria of the River Grabia. Part l, Faunistic Societas Scientiarum Lodziensis II, Sec. III, N°50. Lódź. 253 pp.Google Scholar
  74. Pelletier, J. 1982. Types et zones d'écoulement des eaux dans les plaines et collines de la région de Morestel, Brégnier-Cordon. Revue Géographique de Lyon 57: 25–38.Google Scholar
  75. Penczak, T. 1972. Structure of fish groupings in the rivers and streams of the River Nida drainage basin. Ekol. Pol. 20: 1–18.Google Scholar
  76. Penczak, T. 1985. Influence of site area on the estimation of the density of fish populations in a small river. Aquacult. Fish. Mgmt. 1: 213–285.Google Scholar
  77. Penczak, T. & M. Zalewski. 1974. Distribution of fish numbers and biomass in barbel region of the river and the adjoining old river-beds. Ekol. Pol. 22: 107–119.Google Scholar
  78. Persat, H., A. Nelva, E. Pattee, J.F. Perrin & A.L. Roux. 1981. Composition des peuplements piscicoles dans trois secteurs du Haut-Rhône: relations avec les parametres du milieu. Actes du XXVI Congrès AFL Orléans, Les grands fleuves français: 145–153.Google Scholar
  79. Persat, H., A. Nelva & D. Chessel. 1985. Approche par l'analyse discriminante sur variables qualitatives d'un milieu lotique, le Haut-Rhne français. Oecol. Géner. 6: 365–381.Google Scholar
  80. Philippart, J.-C. & M. Vranken. 1983. Atlas des poissions de Wallonie. Distribution, écologie, éthologie, pche, conservation. Cahiers d'éthologie appliquée 3: 1–395.Google Scholar
  81. Rostan, J.-C., C. Amoros & J. Juget. 1987. The organic content of the surficial sediment: a method for the study of ecosystem development in abandoned river channels. Hydrobiologia 148: 45–62.CrossRefGoogle Scholar
  82. Roule, L. 1927. Les Poissons et le Monde Vivant des Eaux. Tome 11. La vie et I'action. Librairie Delagrave, Paris. 327 pp.Google Scholar
  83. Roule, L. 1931. Les Poissons et le Monde Vivant des Eaux. Tome IV. Les oeufs et les nids. Librairie Delagrave, Paris. 293 pp.Google Scholar
  84. Rousseau, B., A. Nelva, H. Persat & D. Chessel. 1985. Constitution d'une base de données ichtyologiques par l'échantillonnage ponctuel d'abondance: application aux peuplements du Haut-Rhne français. Cybium 9: 157–173.Google Scholar
  85. Roux, A.L. 1976. Structure et fonctionnement des écosystèmes du Haut-Rhne français, N°1. Présentation de l'étude. Bull. Ecol. 7: 475–478.Google Scholar
  86. Roux, C. & E. Castella. 1987. Les peuplements larvaires de Trichoptères des anciens lits fluviaux dans trois secteurs de la plaine alluvialle du Haut-Rhne français. pp. 305–311. In: M. Bournaud & H. Tachet (ed.) Proc. 5th Internat. Symp. Trichoptera, Dr W. Junk Publishers, Dordrecht.Google Scholar
  87. Schlosser, I.J. 1982. Fish community structure and function along two habitat gradients in a headwater stream. Ecol. Monogr. 52: 395–414.Google Scholar
  88. Schmitz, W. 1955. Physiographische Aspekte der limnologischen Fliessgewässertypen. Arch. Hydrobiol. Suppl. 22: 510–523.Google Scholar
  89. Schröder, T. 1979. Aspekte der Ökologie von Frühentwicklungsstadien einiger Fischarten in Altrhein und Labor. Diplomarbeit (M.Sc. Thesis). W. Goethe University, Frankfurt am Main. 100 pp.Google Scholar
  90. Sheaffer, W.A. & J.G. Nickum. 1986. Backwater areas as nursery habitats for fishes in Pool 13 of the Upper Mississippi River. Hydrobiologia 136: 131–140.CrossRefGoogle Scholar
  91. Sheldon, A.L. 1968. Species diversity and longitudinal succession in stream fishes. Ecology 49: 193–198.Google Scholar
  92. Spillmann, C.J. 1961. Poissons d'eau douce. Faune de France, Editions Paul LeChevalier, Paris. 303 pp.Google Scholar
  93. Spillmann, C.J. 1967. Sur l'identité spécifique des poissonschats importés d'Amerique du nord et répandu actuellement dans les eaux douces françaises. Bull. Mus. natu. Hist. Nat. Paris 39: 288–292.Google Scholar
  94. Stankovič, S. & D. Jankovič. 1971. Mechanismus der Fischproduktion im Gebiet des mittleren Donaulaufes. Arch. Hydrobiol./suppl. 36 (Donauforschung IV) 4: 299–305.Google Scholar
  95. Stankovich, S. 1921. Etude sur la morphologie et la nutrition des alevins de poissons cyprinides. Thèse de Doctorat d'Etat, Grenoble. 182 pp.Google Scholar
  96. Swingle, H.S. 1950. Relationships and dynamics of balanced and unbalanced fish populations. Alab. Exp. Station, Bull. 274, Alab. Polytech. Instit., Auburn. 73 pp.Google Scholar
  97. Sylvester, J.R. & J.D. Broughton. 1983. Distribution and relative abundance of fish in Pool 7 of the Upper Mississippi River. N. Amer. J. Fish. Mgmt. 3: 67–71.CrossRefGoogle Scholar
  98. Vannote, R.L., G.W. Mlinshall, K.W. Cummins, J.R. Sedell & C.E. Cushing. 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130–137.Google Scholar
  99. Vivier, P. 1951. Poissons et crustaéds d'eau douce acclimatés en France en eaux libres depuis le début du siecle. La terre et la vie 98: 57–82.Google Scholar
  100. Ward, J.V. & J.A. Stanford. 1983. The serial discontinuity concept of lotic ecosystems. pp. 29–42. In: T.D. Fontaine & S.M. Bartell (ed.) Dynamics of Lotic Systems, Ann Arbor Sci. Publishers, Ann Arbor.Google Scholar
  101. Welcomme, R.L. 1985. River fisheries. FAO Tech. Paper 262. FAO, Rome.Google Scholar
  102. Whittaker, R.H. 1973. Approaches to classifying vegetation. pp. 325–354. In: R.H. Whittaker (ed.) Ordination and Classification of Communities, Dr W. Junk Publishers, The Hague.Google Scholar
  103. Witkowski, A., 1984a. Analysis of the ichthyofauna of the basin Biebrza, Part 2. Fragm. faun. 28: 137–184.Google Scholar
  104. Witkowski, A. 1984b. Structure of communities and biomass of ichthyofauna in the Biebrza River, its old river beds and affluents. Pol. Ecol. Stud. 10: 447–474.Google Scholar
  105. Zalewski, M. & R.J. Naiman. 1985. The regulation of riverine fish communities by a continuum of abiotic-biotic factors. pp. 1–9. In: J.S. Alabaster (ed.) Habitat Modification and Freshwater Fisheries, Butterworths Publishers London.Google Scholar
  106. Zaret, T.M. 1982. The stability/diversity controversy: a test of hypothese. Ecology 63: 721–731.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Gordon H. Copp
    • 1
  1. 1.Laboratoire d'Ecologie des Eaux Douces, UA CNRS 367Université C. Bernard, Lyon 143, bd 11 novembre 1918Villeurbanne, CedexFrance
  2. 2.Eastern River Group, FBA Regional Fisheries LaboratoryHuntingdonU.K.

Personalised recommendations