Environmental Biology of Fishes

, Volume 34, Issue 2, pp 181–195 | Cite as

The ontogeny of search behavior in the white crappie, Pomoxis annularis

  • Howard I. Browman
  • W. John O'Brien


Animals that forage for discrete, isolated resources are often characterized as either ‘ambush’ (sit-and-wait) or ‘cruise’ (active) searchers. Juvenile white crappie, Pomoxis annularis, search for zooplankton prey using a saltatory search (SS) strategy. Unlike ambush and cruise search, SS involves scanning for prey only during the brief stationary periods that punctuate repositioning movements. If prey are not found, these fish swim a short distance, stop, and scan again. In this paper, we describe the ontogeny of prey search in the white crappie and compare the search pattern that they employ with that of juveniles. White crappie larvae searched for prey throughout the search space and only during the pauses that punctuated swimming movements. Prey location distances increased with fish size, as did several other components of the predation cycle. We conclude that white crappie larvae employ a search strategy similar to that exhibited by juveniles. We emphasize that, to obtain an accurate assessment of the feeding ecology of early life history stages, the search pattern that they employ must be characterized, and its components quantified.

Key words

Teleost fish Foraging behavior Zooplanktivory Pause-travel search Saltatory search Locomotory pattern Prey encounter rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Andersson, M. 1981. On optimal predator search. Theor. Popul. Biol. 19: 58–86.Google Scholar
  2. Arnold, G.P. & B.H. Holford. 1990. The reactive perceptive field of the larval plaice (Pleuronectes platessa L.): a three-dimensional analysis of visual feeding. Rapp. P. -v. Comm. Internat. Explor. Mer 191: 474.Google Scholar
  3. Arnold, G.P. & P.B.N. Nutall-Smith. 1974. Shadow cinematography of fish larvae. Mar. Biol. 28: 51–53.Google Scholar
  4. Auer, N.A. 1982. (ed.). Identification of larval fishes of the great lakes basin with special reference to the Lake Michigan drainage. Great Lakes Fishery Commission, Special Publication 82–3. 744 pp.Google Scholar
  5. Barker, H.R. & B.M. Barker. 1984. Multivariate analysis of variance (MANOVA). A practical guide to its use in scientific decision making. The University of Alabama Press, Tuscaloosa. 160 pp.Google Scholar
  6. Bell, W.J. 1990. Searching behaviour. The behavioural ecology of finding resources. Chapman & Hall, New York. 400 pp.Google Scholar
  7. Blaxter, J.H.S. 1986. Development of sense organs and behavior of teleost larvae with special reference to feeding and predator avoidance. Trans. Amer. Fish. Soc. 115: 98–114.Google Scholar
  8. Blaxter, J.H.S. & M.E. Staines. 1971. Food searching potential in marine fish larvae. pp. 467–485. In: D.J. Crisp (ed.) Fourth European Marine Biology Symposium, Cambridge University Press, Cambridge.Google Scholar
  9. Braum, E. 1963. Die ersten Beutefanghandlungen junger Blaufelchen (Coregonus wartmanni Bloch) und Hechte (Esox lucius L.). Z. Tierpsychol. 20: 257–266.Google Scholar
  10. Braum, E. 1964. The survival of fish larvae with reference to their feeding behaviour and the food supply. pp. 113–131. In: S.D. Gerking (ed.) The Biological Basis of Freshwater Fish Production, Blackwell Scientific, Oxford.Google Scholar
  11. Browman, H.I. 1989. Behavioral ecology of foraging in a zooplanktivorous fish, Pomoxis annularis, and a predaceous invertebrate, Leptodora kindti: ontogenetic and neuroethological perspectives. Ph.D. Dissertation, The University of Kansas, Lawrence.169pp.Google Scholar
  12. Browman, H.I., W.C. Gordon, B.I. Evans & W.J. O'Brien. 1990. Correlation between histological and behavioral measures of visual acuity in a zooplanktivorous fish, the white crappie (Pornoxis annularis). Brain, Behav. Evol. 35: 85–97.Google Scholar
  13. Browman, H.I., S. Kruse & W.J. O'Brien. 1989. Foraging behavior of the predaceous cladoceran, Leptodora kindti, and escape responses of their prey. J. Plank. Res. 11: 1075–1088.Google Scholar
  14. Brown, J.A. & P.W. Colgan. 1984. The ontogeny of feeding behaviour in four species of centrarchid fish. Behav. Process 9: 395–411.Google Scholar
  15. Brown, J.A. & P.W. Colgan. 1985. Interspecific differences in the ontogeny of feeding behavior in two species of centrarchid fish. Z. Tierpsychol. 70: 70–80.Google Scholar
  16. Drost, M.R. 1987. Relation between aiming and catch success in larval fishes. Can. J. Fish. Aquat. Sci. 44: 304–315.Google Scholar
  17. Dunbrack, R.L. & L.M. Dill. 1984. Three dimensional prey reaction field of the juvenile coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 41: 1176–1182.Google Scholar
  18. Edgerton, H.E. 1977. Silhouette photography of small active subjects. J. Microsc. 110: 79–81.Google Scholar
  19. Ehlinger, T.J. 1989. Learning and individual variation in bluegill foraging: habitat-specific techniques. Anim. Behav. 38: 643–658.Google Scholar
  20. Ehlinger, T.J. 1990. Habitat choice and phenotypic-limited feeding efficiency in bluegill: individual differences and trophic polymorphism. Ecology 71: 886–896.Google Scholar
  21. Ehlinger, T.J. & D.S. Wilson. 1988. Complex foraging polymorphism in bluegill sunfish. Proc. Natl. Acad. Sci. USA 85: 1878–1882.Google Scholar
  22. Evans, B.I. & W.J. O'Brien. 1988. A reevaluation of the search cycle of planktivorous Arctic grayling, Thymallus arcticus. Can. J. Fish. Aquat. Sci. 45: 187–192.Google Scholar
  23. Heidinger, R.C., B. Tetzlaff & J. Stoeckel. 1985. Evidence of two feeding subpopulations of white crappie (Pomoxis annularis) in Rend Lake, Illinois. Jour. Freshw. Ecol. 3: 133–143.Google Scholar
  24. Houde, E.D. & R.C. Schekter. 1980. Feeding by marine fish larvae: developmental and functional responses. Env. Biol. Fish. 5: 315–334.Google Scholar
  25. Huey, R.B. & E.R. Pianka. 1981. Ecological consequences of foraging mode. Ecology 62: 991–999.Google Scholar
  26. Hunter, J.R. 1972. Swimming and feeding behavior of larval anchovy, Engraulis mordax. U.S. Fish. Bull. 70: 821–838.Google Scholar
  27. Hunter, J.R. 1977. Behavior and survival of northern anchovy, Engraulis mordax, larvae. Calif. Coop. Oceanic Fisher. Invest. Rep. 19: 138–146.Google Scholar
  28. Hunter, J.R. 1980. The feeding behavior and ecology of marine fish larvae. pp. 287–330. In: J.E. Bardach, J.J. Magnuson, R.C. May & J.M. Reinhart (ed.) Fish Behavior and Its Use in the Capture and Culture of Fishes, ICLARM Conf. Proceed. 5, Manila.Google Scholar
  29. Hunter, J.R. & G.L. Thomas. 1974. Effect of prey distribution and density of the searching and feeding behaviour of larval anchovy Engraulis mordax Girard. pp. 559–574. In: J.H.S. Blaxter (ed.) The Early Life History of Fish, Springer-Verlag, New York.Google Scholar
  30. Janssen, J. 1982. Comparison of searching behavior for zooplankton in an obligate planktivore, blueback herring (Alosa aestivalis) and a facultative plantivore, bluegill (Lepomis machrochirus). Can. J. Fish. Aquat. Sci. 39: 1649–1654.Google Scholar
  31. Lachenbruch, P.A. 1975. Discriminant analysis. Hafner Press, New York. 227 pp.Google Scholar
  32. MacKenzie, B.R., W.C. Leggett & R.H. Peters. 1990. Estimating larval fish ingestion rates: can laboratory derived values be reliably extrapolated to the wild? Mar. Ecol. Prog. Ser. 67: 209–225.Google Scholar
  33. Marcy, D.E.1954. The food and growth of the white crappie, Pomoxis annularis, in Pymatuning lake, Pennsylvania and Ohio. Copeia 1954: 236–239.Google Scholar
  34. Mathur, D. & T.W. Robbins. 1971. Food habits and feeding chronology of the young white crappie, Pomoxis annularis Rafinesque in Conowingo reservoir. Trans. Amer. Fish. Soc. 100: 307–311.Google Scholar
  35. McLaughlin, R.L. 1989. Search modes of birds and lizards: evidence for alternative movement patterns. Amer. Nat. 133: 654–670.Google Scholar
  36. Meyer, A. 1986. Changes in behavior with increasing experience with a novel prey in fry of the Central American cichlid, Cichlasoma managuense (Teleostei: Cichlidae). Behaviour 98: 145–167.Google Scholar
  37. Meyer, A. 1987. First feeding success with two types of prey by the Central American cichlid fish, Cichlasoma managuense (Pisces, Cichlidae): morphology versus behavior. Env. Biol. Fish. 18: 127–134.Google Scholar
  38. Noakes, D.L.G. & J.-G.J. Godin. 1988. Ontogeny of behavior and concurrent developmental changes in sensory systems in teleost fishes. pp. 345–395. In: W.S. Hoar & D.J.Randall (ed.) Fish Physiology, Volume 11B, Viviparity and Post Hatching Juveniles, Academic Press, New York.Google Scholar
  39. O'Brien, W.J., H.I. Browman & B.I. Evans. 1990. Search strategies in foraging animals. Amer. Sci. 78: 152–160.Google Scholar
  40. O'Brien, W.J., B.I. Evans & H.I. Browman. 1989. Flexible search tactics and efficient foraging in saltatory searching animals. Oecologia 80: 100–110.Google Scholar
  41. O'Brien, W.J., B.I. Evans & G. Howick. 1986. A new view of the predation cycle in a planktivorous fish. Can. J. Fish. Aquat. Sci. 43: 1894–1899.Google Scholar
  42. O'Brien, W.J., B. Loveless & D. Wright. 1984. Feeding ecology of young white crappie in a Kansas reservoir. N. Amer. J. Fisher. Manag. 4: 341–349.Google Scholar
  43. Osse, J.W.M. 1990. Form changes in fish larvae in relation to changing demands of function. Nether. J. Zool. 40: 362–385.Google Scholar
  44. Rosenthal, H. 1969. Investigations regarding the prey catching behavior in larvae of the herring (Clupea harengus). Mar. Biol. 3: 208–221.Google Scholar
  45. Rosenthal, H. & G. Hempel. 1970. Experimental studies in feeding and food requirements of herring larvae (Clupea harengus L.). pp. 344–364. In: J.H. Steele (ed.) Marine Food Chains, Oliver & Boyd, Edinburgh.Google Scholar
  46. Schoener, T.W. 1971. Theory of feeding strategies. Ann. Rev. Ecol. System 2: 369–404.Google Scholar
  47. Scott, W.B. & E.J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Board of Canada Bulletin No 184, Ottawa. 966 pp.Google Scholar
  48. Statistical package for the social sciences. 1987. SPSS/PC + Advanced Statistics Guide v2.0, McGraw-Hill Book Co., New York. 360 pp.Google Scholar
  49. Tye, A. 1989. A model of search behaviour for the northern wheatear Oenanthe oenanthe (Aves, Turdidae) and other pause-travel predators. Ethology 83: 1–18.Google Scholar
  50. Vlymen, W.J. 1977. A mathematical model of the relationship between larval anchovy (Engraulis mordax) growth, prey microdistribution, and larval behavior. Env. Biol. Fish. 2: 211–233.Google Scholar
  51. Wanzenböck, J. 1992. Ontogeny of prey attack behaviour in larvae and juveniles of three European cyprinids. Env. Biol. Fish. 33: 23–32.Google Scholar
  52. Wanzenböck, J. & F. Schiemer. 1989. Prey detection in cyprinids during early development. Can. J. Fish. Aquat. Sci. 46: 995–1001.Google Scholar
  53. Zaunreiter, M., H. Junger & K. Kotrschal. 1991. Retinal morphology of cyprinid fishes: a quantitative histological study of ontogenetic changes and interspecific variation. Vision. Res. 31: 383–394.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Howard I. Browman
    • 1
  • W. John O'Brien
    • 1
  1. 1.Department of Systematics and EcologyThe University of KansasLawrenceU.S.A.
  2. 2.Department of BiologyUniversity of VictoriaVictoriaCanada

Personalised recommendations