Environmental Biology of Fishes

, Volume 35, Issue 3, pp 283–290 | Cite as

Ecophysiology of Aufwuchs-eating cichlids in Lake Tanganyika: niche separation by trophic specialization

  • Christian Sturmbauer
  • Wolfgang Mark
  • Reinhard Dallinger


The Aufwuchs-eating cichlids of Lake Tanganyika show clear trophic differences that are correlated to their morphology, physiology and foraging behaviour. The species are grouped into three categories of relative intestinal length according to their feeding habits. A correlation between the intestinal length and the diet could be demonstrated, ranging from around 2.5 for species ingesting more animal food, to 7.8 for detritivorous and microalgivorous species. The relative intestinal length of domesticTropheus moorii, raised in aquaria was significantly lower than that of wild individuals by a factor of 1.7, demonstrating a wide range of phenotypic adaptability. The activities of trypsin and amylase were at an equal level in four Aufwuchseating species, but the activity of laminarinase of a detritivorous-microalgivorous species (Petrochromis orthognathus) was 2.6 times higher than that of an algivorous species (Tropheus moorii). The laminarinase seems to be an excellent marker enzyme for detritivorous or microalgivorous feeding.

Key words

Feeding Diet Nutrition Intestinal length Digestive enzymes Trypsin Amylase Laminarinase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Bergmeyer, H.U. (ed.) 1974. Methods in enzymatic analysis. Verlag Chemie, Weinheim. Vol. 1, pp. 1060–1062.Google Scholar
  2. Echelle, A.A. & I. Kornfieldes flocks. University of Maine Press, Orono. 257 pp.Google Scholar
  3. Fryer, G. & T.D. Iles. 1972. The cichlid fishes of the great lakes of Africa. Oliver & Boyd, Edinburgh. 641 pp.Google Scholar
  4. Greenwood, P.H. 1959. The monotypic genera of cichlid fishes in Lake Victoria, Part II. Bull. Brit. Mus. Nat. Hist. (Zool.) 5: 165–177.Google Scholar
  5. Greenwood, P.H. 1965. Environmental effects on the pharyngeal mill of a cichlid fish,Astatoreochromis alluaudi and their taxonomic implications. Proc. Linn. Soc. London 176: 1–10.Google Scholar
  6. Hofer, R. 1979a. The adaption of digestive enzymes to temperature, season and diet in roachRutilus rutilus L. and ruddScardinius erythrophthalmus L. — Amylase. J. Fish Biol. 14: 565–572.Google Scholar
  7. Hofer, R. 1979b. The adaption of digestive enzymes to temperature, season and diet in roachRutilus rutilus L. and ruddScardinius erythrophthalmus L. — Proteases. J. Fish Biol. 15: 373–379.Google Scholar
  8. Hofer, R. 1988. Morphological adaptations of the digestive tract of tropical cyprinids and cichlids to diet. J. Fish Biol. 33: 399–408.Google Scholar
  9. Hofer, R. & G. Köck. 1989. Method for qualitative determination of digestive enzymes in fish larvae. Pol. Arch. Hydrobiol. 36: 439–441.Google Scholar
  10. Hofer, R. & F. Schiemer. 1981. Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia 48: 342–345.CrossRefGoogle Scholar
  11. Hoogerhoud, R.J.C. 1986. Taxonomic and ecological aspects of morphological plasticity in molluscivorous haplochromines (Pisces, Cichlidae). Ann. Mus. Roy. Afr. Centr. Sc. Zool. 251: 131–134.Google Scholar
  12. Hynes, H.B.N. 1950. The food of freshwater sticklebacks (Gasterosteus aculeatus andPygosteus pungitius), with a review of methods used in studies of the food of fishes. J. Animal Ecol. 19: 36–58.Google Scholar
  13. Kawai, S. & S. Ikeda. 1972. Studies on the digestive enzymes of fishes — II. Effect of dietary changes on the activities of digestive enzymes in carp intestine. Bull. Jap. Soc. Sci. Fish 38: 265–270.Google Scholar
  14. Köck G. & R. Hofer. 1989. The effect of natural and artificial diets upon tryptic activity of roach (Rutilus rutilus) and whitefish (Coregonus sp.) larvae. Pol. Arch. Hydrobiol. 36: 443–453.Google Scholar
  15. Kornfield, I. & J.N. Taylor. 1983. A new species of polymorphic fish,Cichlasoma minckleyi, from Cuatro Cienegas, Mexico (Teleostei: Cichlidae). Proc. Biol. Soc. Wash. 92: 253–269.Google Scholar
  16. Liem, K.F. 1973. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22: 425–441.Google Scholar
  17. Liem, K.F. 1980. Adaptive significance of intra- and interspecific differences in the feeding repertoire of cichlid fishes. Amer. Zool 20: 295–314.Google Scholar
  18. Liem, K.F. 1984. Functional versatility, speciation and niche overlap: are fishes different? pp. 269–305. In: D.G. Meyers & J. R. Strickler (ed.) Trophic Interactions Within Aquatic Ecosystems, AAAS Selected Symposium 1985.Google Scholar
  19. Liem, K.F. & J.W. Osse. 1975. Biological verstility, evolution and food resource exploitation in African cichlids. Amer. Zool. 15: 427–454.Google Scholar
  20. Mbomba, N.B. 1983. Comparative morphology of the feeding apparatus in cichlidian algal feeders of Lake Tanganyika. Afr. Stud. Monogr. 3: 1–23.Google Scholar
  21. Mbomba, N.B. 1986. Comparative feeding ecology of Aufwuchs eating cichlid fishes in Lake Tanganyika with reference to their developmental changes. Physiol. Ecol. Japan 23: 79–108.Google Scholar
  22. McKaye, K.R. & A. Marsh. 1983. Food switching by two specialized algae-scraping cichlid fishes in Lake Malawi, Africa. Oecologia 56: 245–248.CrossRefGoogle Scholar
  23. Meyer, A. 1987. Phenotypic plasticity and heterochrony inCichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41: 1357–1369.Google Scholar
  24. Meyer, A. 1990a. Ecological and evolutionary consequences of the trophic polymorphism inCichlasoma citrinellum (Pisces: Cichlidae). Biol. J. Linn. Soc. 39: 279–299.Google Scholar
  25. Meyer, A. 1990b. Morphometrics and allometry in the trophically polymorphic cichlid fish,Cichlasoma citrinellum: alternative adaptations and ontogenetic changes in shape. J. Zool. Lond. 221: 237–260.Google Scholar
  26. Nagase, G. 1964. Contribution to the physiology of digestion inTilapia mossambica Peters: digestive enzymes and the effects of diet on their activity. Z. vergl. Physiol. 49: 270–284.CrossRefGoogle Scholar
  27. Niederholzer, R. & R. Hofer. 1979. The adaption of digestive enzymes to temperature, season and diet in roachRutilus rutilus L. and ruddScardinius erythrophthalmus L. — Cellulase. J. Fish Biol. 15: 411–416.Google Scholar
  28. Piavaux, A. 1972. Intestinal laminarinase of a vertebrate:Tilapia macrochir Boulenger (Teleostei, Cichlidae). Life Sciences 11: 185–190.CrossRefGoogle Scholar
  29. Piavaux, A. 1977. Distribution and localization of the digestive laminarinases in animals. Biochem. System. Ecol. 5: 231–239.CrossRefGoogle Scholar
  30. Piavaux, A. & G. Dandrifosse. 1972. Presence de laminarinases dans l'intestin d'un poisson cichlidaeTilapia macrochir Boulenger. Arch. Int. Physiol. Biochim. 80: 51–57.PubMedGoogle Scholar
  31. Reinthal, P.N. 1990. The feeding habits of a group of herbivorous rock-dwelling cichlid fishes (Cichlidae: Perciformes) from Lake Malawi, Africa. Env. Biol. Fish. 27: 215–233.Google Scholar
  32. Ribble, D.O. & M.H. Smith. 1983. Relative intesine length and feeding ecology of freshwater fishes. Growth 47: 292–300.PubMedGoogle Scholar
  33. Sturmbauer, C. 1990. Vergleichende Untersuchungen zur Physiologie und Ethologie herbivorer Fische. Thesis, University of Innsbruck, Innsbruck, 130 pp.Google Scholar
  34. Sturmbauer, C. 1991. Different enzymes for laminarine digestion inChondrostoma nasus (Cyprinidae) andOreochromis sp. (Cichlidae). Comp. Biochem. Physiol. B100: 199–202.CrossRefGoogle Scholar
  35. Sturmbauer, C. & R. Hofer. 1986. Compensation for anylase inhibitors in the intestine of the carp (Cyprinus carpio). Aquaculture 52: 31–33.CrossRefGoogle Scholar
  36. Takamura, K. 1983. Interspecific relationship between two Aufwuchs-eatersPetrochromis polyodon andTropheus moorii (Pisces, Cichlidae) of Lake Tanganyika, with a discussion on the evolution and functions of a synbiotic relationship. Physiol. Ecol. Japan 20: 59–69.Google Scholar
  37. Takamura, K. 1984. Interspecific relationships of Aufwuchseating fishes in Lake Tanganyika. Env. Biol. Fish. 10: 225–241.CrossRefGoogle Scholar
  38. Witte, F. 1984. Consistency and functional significance of morphological differences between wild-caught and domesticHaplochromis squamipinnis (Pisces: Cichlidae). Netherl. J. Zool. 34: 596–612.Google Scholar
  39. Witte, F., C.D.N. Barel & R.J.C. Hoogerhoud. 1990. Phenotypic plasticity of anatomical structures and its ecomorphological significance. Netherl. J. Zool. 40: 278–298.Google Scholar
  40. Yamaoka, K. 1982. Morphology and feeding behaviour of five species of genusPetrochromis (Teleostei, Cichlidae). Physiol. Ecol. Jap. 19: 57–75.Google Scholar
  41. Yamaoka, K. 1983. Feeding behaviour and dental morphology of algae scraping cichlids (Pisces: Teleostei) in lake Tanganyika. Afr. Stud. Monogr. 4: 77–89.Google Scholar
  42. Yamaoka, K. 1988. Comparative osteology of the suspensoral complex of algal-feeding cichlids (Pisces, Teleostei) from Lake Tanganyika. Afr. Stud. Monogr. 9: 65–84.Google Scholar
  43. Yamaoka, K., M. Hori & S. Kuratani. 1986. Ecomorphology of feeding in ‘goby-like’ cichlid fishes in Lake Tanganyika. Physiol. Ecol. Jap. 23: 17–29.Google Scholar
  44. Zihler, F. 1982. Gross morphology and configuration of digestive tracts of cichlidae (Teleostei, Perciformes): phylogenetic and functional significance. Netherl. J. Zool. 32: 544–571.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Christian Sturmbauer
    • 1
  • Wolfgang Mark
    • 1
  • Reinhard Dallinger
    • 1
  1. 1.Institute of Zoology, Department of ZoophysiologyUniversity of InnsbruckInsbruckAustria

Personalised recommendations