Environmental Biology of Fishes

, Volume 35, Issue 3, pp 273–282 | Cite as

Quantitative scanning electron microscopy of solitary chemoreceptor cells in cyprinids and other teleosts

  • Kurt Kotrschal


Solitary chemosensory cells (SCC) occur in the epidermis of many lower, aquatic vertebrates. By scanning electron microscopy, SCC apices were counted and density distributions estimated along various transects at the head and body of 12 species of teleost fishes, 7 cyprinids, 2 perciforms, 2 catfish and 1 characinid. In contrast to taste buds (TB), the distribution of SCCs is relatively even, with slightly higher densities at the forehead and along the dorsal trunk. In most species 1000 to 1500 SCC apices per mm2 of skin were counted. Considerably higher densities occur in halos around free neuromasts. Depending on fish size and apex density, the epidermis of individuals may contain millions of SCCs. SCCs are considerably more abundant in individual fish than TB sensory cells. Highest average SCC densities (2000–4000 per mm2) were found in the cyprinids, roach, nase, chub and bream. Lowest densities (250 per mm2) occurred in the neon tetra. No correlations could be found between SCC densities and TB densities or relative size of the brain stem facial lobe, supporting the view of different functions and biological roles of the SCC and the TB systems. Whether teleost SCCs generally respond to mucoid substances, as in the case of the rocklings, remains an open question.

Key words

Common chemical sense Fish Mucus detection Skin Taste 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Baatrup, E. & K.B. Doving. 1985. Physiological studies on solitary receptors of the oral disc papillae in the adult brook lamprey,Lampetra planeri (Bloch). Chem. Sens. 10: 559–566.Google Scholar
  2. Bardach, J.E. & J. Atema. 1971. The sense of taste in fishes. pp. 293–236. In: L.M. Beidler (ed.) Handbook of Sensory Physiology 4, Springer-Verlag, Berlin.Google Scholar
  3. Bardach, J.E. & J. Case. 1965. Sensory capabilities of the modified fins of squirrel hake (Urophycis chuss) and searobins (Prionotus carolinus andP. evolans). Copeia. 1965: 194–206.Google Scholar
  4. Berri, R., R. Vezzosi & A. Ercolini. 1989. Locomotory response ofPhreatichthys andruzzi Vinciguerra (Pisces, Cyprinidae) to chemical signals of conspecifics and closely related species. Experientia 45: 205–207.CrossRefGoogle Scholar
  5. Brandstätter, R. & K. Kotrschal. 1990. Brain growth patterns from juveniles to adults in four mid-European cyprinid fishes (Cyprinidae, Teleostei), roach (Rutilus rutilus), bream (Abramis brama), carp (Cyprinus carpio) and sabre-carp (Pelecus cultratus). Brain, Behav. Evolut. 35: 195–211.Google Scholar
  6. Caprio, J. 1988. Peripheral filters and chemoreceptor cells in fishes. pp. 313–338. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer-Verlag, New York.Google Scholar
  7. Finger, T.E. 1982. Somatotopy of the representation of the pectoral fin and free fin rays in the spinal cord of the sea robin,Prionotus carolinus. Biol. Bull. 163: 154–161.Google Scholar
  8. Finger, T.E. 1989. Sensorimotor mapping and oropharyngeal reflexes in goldfish. Chemorec. Abstr. 17: 6.Google Scholar
  9. Frisch, von K. 1941. Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Z. vgl. Physiol. 29: 46–145.CrossRefGoogle Scholar
  10. Gomahr, A., M. Palzenberger & K. Kotrschal. 1992. Density distribution of external taste buds in cyprinids. Env. Biol. Fish. 33: 125–134.Google Scholar
  11. Herrick, C.J. 1904. The organs and sense of taste in fishes. U.S. Fish. Comm. Bull. 22: 239–272.Google Scholar
  12. Herrick, C.J. 1906. On the centers for taste and touch in the medulla oblongata of fishes. J. Comp. Neurol. Psychol. 16: 403–439.CrossRefGoogle Scholar
  13. Jakubowski, M. & M. Whitear. 1986. Ultrastructure of taste buds in fishes. Folia Histochem. Cytobiol. 24: 310–311.Google Scholar
  14. Jakubowski, M. & M. Whitear. 1990. Comparative morphology and cytology of taste buds in teleosts. Z. mikrosk.-anat. Forsch. 104: 529–560.Google Scholar
  15. Kinnamon, J.C. 1987. Organization and innervation of taste buds. pp. 277–298 In: T.E. Finger & W.L. Silver (ed.) Neurobiology of Taste and Smell, J. Wiley, New York.Google Scholar
  16. Kiyohara, S., S. Yamashita & J. Kitoh. 1980. Distribution of taste buds on the lips and inside the mouth in the minnow,Pseudorasbora parva. Physiol. Behav. 24: 1143–1147.CrossRefPubMedGoogle Scholar
  17. Kiyohara, S., I. Hidaka, J. Kitoh & S. Yamashita. 1985. Mechanical sensitivity of the facial nerve fibers innervating the anterior palate of the puffer,Fugu pardalis, and their central projection to the primary taste center. J. Comp. Physiol. A 157: 705–716.CrossRefPubMedGoogle Scholar
  18. Kotrschal, K. & H. Junger. 1988. Patterns of brain morphology in mid-European Cyprinidae (Pisces, Teleostei): a quantitative histological study. J. Hirnforsch. 29: 341–352.PubMedGoogle Scholar
  19. Kotrschal, K. & M. Whitear. 1988. Chemosensory anterior dorsal fin in rocklings (Gaidropsarus andCiliata, Teleostei, Gadidae): somatotopic representation of the ramus recurrens facialis as revealed by transganglionic transport of HRP. J. Comp. Neurol. 268: 109–120.CrossRefPubMedGoogle Scholar
  20. Kotrschal, K., M. Whitear & H. Adam. 1984. Morphology and histology of the anterior dorsal fin ofGaidropsarus mediterraneus (Pisces, Teleostei), a specialized sensory organ. Zoomorphol. 104: 365–372.CrossRefGoogle Scholar
  21. Kotrschal, K., J. Atema & R. Peters. 1989. A novel chemosensory system in fish: do rocklings (Ciliata mustela, Gadidae) use their solitary chemoreceptor cells as fish detectors? Biol. Bull. 177: 328.Google Scholar
  22. Lane, E.B. & M. Whitear. 1982. Sensory structures on the surface of fish skin. I. Putative chemoreceptors. Zool. J. Linn. Soc. 74: 141–141.Google Scholar
  23. Marui, T. & J. Caprio. 1982. Electrophysiological evidence for the topographical arrangement of taste and tactile neurons in the facial lobe of the channel catfish. Brain Res. 231: 185–190.CrossRefPubMedGoogle Scholar
  24. Peters, R.C., G.W. van Steenderen & K. Kotrschal. 1987. A chemoreceptive function for the anterior dorsal fin in rocklings (Gaidropsarus andCiliata: Teleostei: Gadidae): electrophysiological evidence. J. Mar. Biol. Ass. U.K. 67: 819–823.Google Scholar
  25. Peters, R.C., K. Kotrschal, W.-D. Krautgartner & J. Atema. 1989. A novel chemosensory system in fish: electrophysiological evidence for mucus detection by solitary chemoreceptor cells in rocklings (Ciliata mustela, Gadidae). Biol. Bull. 177: 329.Google Scholar
  26. Peters, R.C., K. Kotrschal & W.-D. Krautgartner. 1991. Solitary chemoreceptor cells ofCiliata mustela (Gadidae, Teleostei) are tuned to mucoid stimuli. Chem. Sens. 16: 31–42.Google Scholar
  27. Reutter, K. 1986. Chemoreceptors. pp. 586–604. In: J. Bereiter-Hahn, A.G. Matoltsy & K.S. Richards (ed.) Biology of the Integument, 2 Vertebrates, Springer-Verlag, Berlin.Google Scholar
  28. Schiemer, F. 1985. Die Bedeutung der Augewässer als Schutzzonen für die Fischfauna. Österreichs Wasserwirtschaft 37: 239–245.Google Scholar
  29. Schiemer, F. 1988. Gefährdete Cypriniden — Indikatoren für die Ökologische Intaktheit von Fluβsystemen. Natur und Landschaft 63: 370–373.Google Scholar
  30. Schulte, E. & A. Holl. 1972. Feibau der Kopftentakel und ihrer Sinnesorgane beiBlennius tentacularis (Pisces, Blenniiformes). Mar. Biol. 12: 67–80.Google Scholar
  31. Sibbing, F.A. 1988. Specializations and limitations of utilization of food by carp,Cyprinus carpio: a study of oral food processing. Env. Biol. Fish. 22: 161–178.Google Scholar
  32. Silver, W.L. 1987. The common chemical sense. pp. 65–87. In: T.E. Finger & W.L. Silver (ed.) Neurobiology of Taste and Smell, J. Wiley, New York.Google Scholar
  33. Silver, W.L. & T.E. Finger. 1984. Electrophysiological examination of a non-olfactory, non-gustatory chemosense in the searobin,Prionotus carolinus. J. Comp. Physiol. A 154: 167–174.CrossRefGoogle Scholar
  34. Todd, J.H., J. Atema & J.E. Bardach. 1967. Chemical communication in social behavior of a fish, the yellow bullhead (Ictalurus natalis). Science 158: 672–673.PubMedGoogle Scholar
  35. Whitear, M. 1952. The innervation of the skin of teleost fishes. Q. J. Microsc. Sci. 93: 298–305.Google Scholar
  36. Whitear, M. 1965. Presumed sensory cells in fish epidermis. Nature 208: 703–704.Google Scholar
  37. Whitear, M. 1971. Cell specialization and sensory function in fish epidermis. J. Zool. (Lond.) 163: 237–264.Google Scholar
  38. Whitear, M. 1976. Identification of the epidermal ‘Stiftchen-zellen’ of frog tadpoles by electron microscopy. Cell Tissue Res. 175: 391–402.CrossRefPubMedGoogle Scholar
  39. Whitear, M. 1991. Solitary chemoreceptor cell. In: T.J. Hara (ed.) Chemoreception in Fishes (in press).Google Scholar
  40. Whitear, M. & K. Kotrschal. 1988. The chemosensory anterior dorsal fin in rocklings (Gaidropsarus andCiliata, Teleostei, Gadidae): activity, fine structure and innervation. J. Zool. (Lond.) 216: 339–366.Google Scholar
  41. Whitear, M. & E.B. Lane. 1983. Oligovillous cells of the epidermis: sensory elements of lamprey skin. J. Zool. (Lond.) 199: 359–384.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Kurt Kotrschal
    • 1
  1. 1.Zoologisches Institut der Universität SalzburgHellbrunnerstraβe 34Austria

Personalised recommendations