Environmental Biology of Fishes

, Volume 17, Issue 4, pp 299–308 | Cite as

Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): a comparison of epigean and hypogean populations

  • Kathrin Hüppop


The standard and routine oxygen consumptions of Astyanax fasciatus from one surface population (Rio Teapao) and three cave populations (Chica, Micos and Pachon caves: ‘sAnoptichthys jordani’, the ‘Micosfish’ and ‘Anoptichthys antrobius’) were determined individually over 24 hours by the use of a flow-through respirometer and polarographic oxygen electrodes. The phylogenetically oldest Pachon fish had a significantly lower standard metabolic rate (0.230 ± 0.036 mg O2 g-1 h-1) than the epigean Teapao fish, the hybrid Chica fish and the phylogenetically younger Micos fish (0.314 ± 0.081 mg O2g--1h-1, 0.284 ± 0.048 mg O2g-1h-1, 0.277 ± 0.063 mg O2g-1h-1). No significant differences could be determined among the latter three populations. A significant difference in routine metabolic rate existed only between the Pachon fish (0.309 ± 0.0.56 mg O2g-1h-1) and the Teapao fish (0.415 ± 0.071 mg O2g-1h-1). The Chica fish (0.356 ± 0.084 mg O2g-1h-1) and the Micos fish (0.355 ± 0.080 mg O2 g-1h-1) could not be separated from either the Teapao or the Pachon fish, but a decreasing trend from the surface population through the Chica and the Micos to the Pachon population was obvious. During a starvation period of 29 days the metabolic rate of epigean Teapao and hypogean Pachon fish decreased significantly by 32.5% and 34.8% (standard oxygen consumption rate) and 27.5% and 28.2% (routine oxygen consumption rate), respectively. Body mass loss during the starvation period was 16.3% for the Teapao fish and 9.5% for the Pachon fish.


Metabolic rate Cavernicolous species Cave adaptation Evolution Starvation Mexico 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Alvarez, J. 1946. Revision del genero Anoptichthys con descripcion de una especie nueva (Pisces, Characidae). An. Esc. Nac. Cien. Biol. Mexico 4: 280–282.Google Scholar
  2. Avise, J.C. & R.K. Selander. 1972. Evolutionary genetics of cave-dwelling fishes of the genus Astyanax. Evolution 26: 1–19.Google Scholar
  3. Barr, T.C. Jr. 1968. Cave ecology and the evolution of troglobites. pp. 35–102. In: T. Dobzhansky, M.K. Hecht & W.G. Steere (ed.) Evolutionary Biology, Vol. 2, North Holland Publ. Comp., New York.Google Scholar
  4. Breder, C.M., Jr. 1942. Descriptive ecology of La Cueva Chica, with especial reference to the blind fish Anoptichthys. Zoologica (N.Y.) 27: 7–16.Google Scholar
  5. Breder, C.M.Jr. 1943. Apparent changes in phenotypic ratios of the characin at the type locality of Anoptichthys jordani Hubbs & Innes. Copeia 1943: 26–33.Google Scholar
  6. Burbanck, W.D., J.P. Edwards & M.P. Burbanck. 1948. Toleration of lowered oxygen tension by cave and stream crayfish. Ecology 29: 36–367.Google Scholar
  7. Burchards, H., A. Dölle & J. Parzefall. 1985 Aggressive behavior of an epigean population of Asiyanax mexicanus (Characidae, Pisces) and some observations on three subterenean population Behav. Proc. 11: 225–235.Google Scholar
  8. Caine, E.A. 1978. Comparative ecology of epigean and hypogean crayfish (Crustacea: Cambaridae) from Northwestern Florida. Amer. Midi. Nat. 99: 315–329.Google Scholar
  9. Cope, E.D. 1894. On the fishes obtained by the naturalist expedition in Rio Grande du Sol. Proc. Amer. Philos. Sec. 33: 89.Google Scholar
  10. Craig, J.F. 1985. Aging in fish. Can. J. Zool. 63: 1–8.Google Scholar
  11. Culver, D.C. 1982. Cave life. Evolution and ecology. Harvard University Press, Cambridge. 189 pp.Google Scholar
  12. Culver, D.C. & T.L. Poulson. 1971. Oxygen consumption and activity in closely related amphipod populations from cave and surface habitats. Amer. Midi. Nat. 85: 74–84.Google Scholar
  13. Cuvier, G. 1819. Sur les poissons du sous-genre Hydrocyon, sur deux especes de Chalceus, sur trois nouvelles especes de Serrasalmes, et sur l"Argentina glossodonta de Forskahl, qui est l"Albula gonorhynchus de Bloch. Mem. Mus. Hist. Nat., Paris 5: 351–379.Google Scholar
  14. Dérouet, L. 1949. Comparaison des échanges respiratoires chez Gammarus pulex L. et Niphargus virei Chevreux. C.R. Acad. Sci. Paris. 228: 1054–1055.Google Scholar
  15. Dérouet, L. 1952. Influence des variations de salinité du milieu extérieur sur des crustacés cavernicoles et épigés. I. Etude de l"intensité des echanges respiratoires. C.R. Acad. Sci. Paris 234: 473–475.Google Scholar
  16. Dérouet, L. 1953a. Métabolisme comparé de deux araignés, l"un troglophile, l"autre epigé obscuricole. Influence de variation brusques de temperature et d"humidité. Publ. Prem. Congr. Int. Spéléol. 3: 237–240.Google Scholar
  17. Dérouet, L. 1953b. Etude compare du métabolisme respiratoire chez certaines éspèces de crustacés cavernicoles et épigé. Notes Biospéléol. 8: 103–109.Google Scholar
  18. Dickson, G.W. & R. Franz. 1980. Respiration rates, ATP turn-over and adenylate energy charge in excised gills of surface and cave crayfish. Comp. Biochem. Physiol. 65A: 375–379.Google Scholar
  19. Dresco-Dérouer., L. 1959. Contribution a l"étude de la biologie de deux crustacés aquatiques cavernicoles: Caecosphaeroma burgundum et Niphargus orcinus virei Chevreux. Vie et Milieu 10: 321–346.Google Scholar
  20. Dresco-Dérouet, L. 1960. Etude biologique comparée de quelques éspèces d"araignés lucicoles et troglophiles. Arch. Zool. Expér. Gén. 98: 271–354.Google Scholar
  21. Dresco-Dérouer, L. 1967. Biologie et métabolisme respiratoire d"Ischyropsabs luteipes Simon (Opiliones) adulte, au laboratoire. Ann. Spéléol. 22: 537–541.Google Scholar
  22. Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 1–12.Google Scholar
  23. Eberly, W. 1960. Competition and evolution in cave crayfishes of Southern Indiana. Syst. Zool. 9: 29–32.Google Scholar
  24. Eigenmann, C.H. 1909. Cave vertebrates of America. A study in degenerative evolution. Carnegie Inst. Wash. Publ. 104. 241 pp.Google Scholar
  25. Erckens, W. 1981.1. Analyse von Versuchen zur Erforschung der Grundlagen der tagesperiodischen Aktivitätsverteilung einer ober- and einer unterirdischen Population des Astyanax mexicanus (Characidae, Pisces). Ph.D. Thesis, University Münster, Münster. 110 pp.Google Scholar
  26. Erckens, W. 1981b. The activity controlling time-system in epigean and hypogean populations of Astyanax mexicanus (Characidae, Pisces). Proc. 8th. Int. Congr. Speleol. 2: 796–797.Google Scholar
  27. Franz, R. 1978. Ecological strategies of closely-related surface and troglobitic Florida crayfishes. Bull. Ecol. Soc. Amer. 59: 70.Google Scholar
  28. Freyre, L.R., O.H. Padin & A.M. Denegri. 1982. Metabolismo energetico de peces dulceaguicolas. 3. Astyanax eigenmanniorum (Cope, 1894). Limnobios 2: 342–348.Google Scholar
  29. Fry, F.E.J. 1957. The aquatic respiration of fish. pp. 1–63. In: M.E. Brown (ed.) The Physiology of Fishes, Vol. 1, Academic Press, New York.Google Scholar
  30. Gal, J. 1903. Niphargus et Caecosphaeroma. Observations physiologiques. Bull. Sci. Nat. Nimes 31: 48–51.Google Scholar
  31. Ginet, R. 1960. Ecologie, éthologie et biologic de Niphargus. Ann. Spéléol. 15: 127–377.Google Scholar
  32. Hadley, N.F., G.A. Ahearn & F.G. Howarth. 1981. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J. Arachnol. 9: 215–222.Google Scholar
  33. Heusner, A.A. 1984. Biological similitude: statistical and functional relationship in comparative physiology. Amer. J. Physiol. 246: 839–845.Google Scholar
  34. Heuts, M.J. 1951. Ecology, variation and adaptation of the blind cave fish Caecobarbus geertsi Blgr. Ann. Soc. Roy. Zool. Belg. 82: 155–230.Google Scholar
  35. Hubbs, C.L. & W.T. Innes. 1936. The first known blind fish of the family Characidae: a new genus from Mexico. Occ. Pap. Mus. Zool. Univ. Michigan 342: 1–7.Google Scholar
  36. Hüppop, K. 1986. The role of metabolism in the evolution of cave animals. Bull. Nat. Speleol. Soc. (in press).Google Scholar
  37. Jegla, T. C. 1964. Studies of the eyestalk, metabolism, and molting and reproductive cycles in a cave crayfish. Ph.D. Thesis University of Illinois, De Kalb. 137 pp.Google Scholar
  38. Kamler, E. 1969. A comparison of the closed-bottle and flowing-water methods for measurement of respiration in aquatic invertebrates. Pol. Arch. Hydrobiol. 16: 31–49.Google Scholar
  39. Kausch, H. 1968. Der Einfluß der Spontanaktivität auf die Stoffwechselrate junger Karpfen (Cyprinus carpio L.) im Hunger and bei Fütterung. Arch. Hydrobiol./Suppl. 33: 263–330.Google Scholar
  40. Kosswig, C. 1960. Zur Phylogenese sogenannter Anpassungsmerkmale bei Höhlentieren. Int. Rev. Ges. Hydrobiol. 45: 493–512.Google Scholar
  41. Kosswig, C. 1967. Über das Tempo evolutiver Prozesse. Zool. Beitr. N.F. 13: 441–450.Google Scholar
  42. Kramer, C.Y. 1956. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics 12: 307–310.Google Scholar
  43. Mathieu, J. 1980. Activité locomotrice et métabolisme respiratoire a 11° C de l"amphipode troglobie Niphargus rhenorhodanensis Schellenberg, 1937. Crustaceana (Suppl.) 6: 160–169.Google Scholar
  44. Mitchell, R.W. 1969. A comparison of temperate and tropical cave communities. Southwestern Naturalist 14: 73–88.Google Scholar
  45. Mitchell, R.W., W.H. Russell & W.R. Elliott. 1977. Mexican eyeless characin fishes, genus Astyanax: environment, distribution and evolution. Spec. Publ. Mus. Texas Techn. University 12: 1–89.Google Scholar
  46. Myers, G.S. 1966. Derivation of the freshwater fish fauna of Central America. Copeia 1966: 766–773.Google Scholar
  47. Parzefall, J. 1982. Sexual and aggressive behaviour in cave animals. pp. 179–195. In: G. Roth (ed.) Environmental Adaptation and Evolution, Gustav Fischer Verlag, Struttgart.Google Scholar
  48. Parzefall, J. 1983. Field observation in epigean and cave populations of the Mexican characid Astyanax mexicanus (Pisces, Characidae). Mem. Speleol. 10: 171–176.Google Scholar
  49. Parzefall, J. 1984a. Regressive Evolution und Verhalten von Höhlentieren. Z. Zool. Syst. Evolutionsforschung Beih. 3: 26–35.Google Scholar
  50. Parzefall, J. 1984b. Genetisch bedingte Verhaltensänderungen bei Höhlentieren und ihren oberirdischen Vorfahren. Mitt. Hamb. Zool. Mus. Inst. Ergbd. 80: 41–51.Google Scholar
  51. Peters, N. & G. Peters. 1966. Das Auge zweier Höhlenformen von Astyanax mexicanus Philippi (Characidae, Pisces). Wilh. Roux'Arch. Entwicklungsmech. Org. 157: 393–414.Google Scholar
  52. Peters, N. & G. Peters. 1973. Genetic problems in the regressive evolution of cavernicolous fish. pp. 187–201. In: J.H. Schröder (ed.) Genetics and Mutagenesis of Fish, Springer Verlag, Heidelberg.Google Scholar
  53. Peters, N., A. Scholl & H. Wilkens. 1975. Der Micos-Fisch, Höhlenfisch in statu nascendi oder Bastard? Ein Beitrag zur Evolution der Höhlentiere. Z. Zool. Syst. Evolutionsforschung 13: 110–124.Google Scholar
  54. Poulson, T.L. 1963. Cave adaptation in amblyopsid fishes. Amer. Midl. Nat. 70: 257–290.Google Scholar
  55. Poulson, T.L. 1964. Animals in aquatic environments: animals in caves. pp. 749–771. In: D.B. Dill. (ed.) Handbook of Physiology, Sect. 4: Adaptation to the environment, Amer. Phys. Soc. 47.Google Scholar
  56. Romero, A. 1983. Introgressive hybridization in the Astyanax fasciatus (Characidae, Pisces) population at La Cueva Chica. Bull. Nat. Speleol. Soc. 45: 81–85.Google Scholar
  57. Sachs, L. 1984. Angewandte Statistik. Springer Verlag, Heidelberg. 552 pp.Google Scholar
  58. Sadoglu, P. 1956. A preliminary report on the genetics of the Mexican cave characins. Copeia 1956: 113–114.Google Scholar
  59. Schemmel, C. 1967. Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen. Z. Morph. Tiere 61: 255–316.Google Scholar
  60. Schemmel, C. 1974. Genetische Untersuchungen zur Evolution des Geschmacksapparates bei cavernicolen Fischen. Z. Zool. Syst. Evolutionsforschung 12: 196–215.Google Scholar
  61. Schemmel, C. 1980. Studies on the genetics of feeding behavior in the cave fish Astyanax mexicanus f.Anoptichthys. An example of apparent monofactorial inheritance by polygenes. Z. Tierpsychol. 53: 9–22.Google Scholar
  62. Schlagel, S.R. & C.M. Breder. 1947. A study of the oxygen consumption of blind and eyed characins in light and darkness. Zoologica (N.Y.) 32: 17–27.Google Scholar
  63. Smit, H. 1965. Some experiments on the oxygen consumption of goldfish (Carassius auratus L.) in relation to swimming speed. Can. J. Zool. 43: 623–633.Google Scholar
  64. Thines, G. 1969. l"evolution regressive des poissons cavernicoles et abyssaux. Masson et Cie, Paris. 394 pp.Google Scholar
  65. Thines, G. & M. Piquemal. 1978. Observations sur le comportement de Lucifuga subterranea Poey (Pisces, Ophidiidae), poisson cavernicole de Cuba. Int. J. Speleol. 10: 195–203.Google Scholar
  66. Thines, G., F. Wolff, C. Boucquey & M. Soffié. 1965. Etude comparative de l"activité du poisson cavernicole Anoptichthys antrobius Alvarez et son ancètre épigé Astyanax mexicanus (Filippi). Ann. Soc. Roy. Zool. Belgique 96: 61–115.Google Scholar
  67. Troiani, D. 1954. La consommation d"oxygène de quelques gammaridae. C.R. Acad. Sci. Paris 239: 1540–1542.Google Scholar
  68. Verrier, M.L. 1929. Observations sur le comportement d"un poisson cavernicole: Typhlichthys osbornii Eigenmann. Bull. Mus. Hist. Nat. 1: 82–84.Google Scholar
  69. Wautier, J. & D. Troiani. 1960. Contribution a l"étude du metabolisme de quelques gammaridae. Ann. Station Centr. Hydr. Appl. 8: 7–50.Google Scholar
  70. Weingartner, D.L. 1977. Production and trophic ecology of two crayfish species cohabiting an Indiana cave. Ph.D. Thesis, University of Michigan, Ann Arbor. 348 pp.Google Scholar
  71. Wilkens, H. 1970a. Beiträge zur Degeneration des Auges bei Cavernicolen, Genzahl und Manifestationsart. Z. Zool. Syst. Evolutionsforschung 8: 1–47.Google Scholar
  72. Wilkens, H. 1970b. Der Bau des Auges cavernicoler Sippen von Astyanax fasciatus (Characidae, Pisces). Beitrag zur Problematik degenerativer Evolutionsprozesse. Wilh. Roux' Arch. Entwicklungsmech. Org. 166: 54–75.Google Scholar
  73. Wilkens, H. 1971. Genetic interpretation of regressive evolutionary processes: studies on hybrid eyes of two Astyanax cave populations (Characidae, Pisces). Evolution 25: 530–544.Google Scholar
  74. Wilkens, H. 1972a. Über Präadaptation für das Höhlenleben, untersucht am Laichverhalten ober- and unterirdischer Populationen des Astyanax mexicanus (Pisces). Zool. Anz. 188: 1–11.Google Scholar
  75. Wilkens, H. 1972b. Zur phylogenetischen Rückbildung des Auges Cavernicoler: Untersuchungen an Anoptichthys jordani (= Astyanax mexicanus, Characidae, Pisces). Ann. Spéléol. 27: 411–432.Google Scholar
  76. Wilkens, H. 1973. Über das phylogenetische Alter von Höhlentieren. Untersuchungen über die cavernicole Süßwasser-fauna Yucatans. Z. Zool. Syst. Evolutionsforschung 11: 49–60.Google Scholar
  77. Wilkens, H. 1976. Genotypic and phenotypic variability in cave animals. Studies on a phylogenetically young population of Astyanax mexicanus (Filippi) (Characidae, Pisces). Ann. Speleol. 31: 137–148.Google Scholar
  78. Wilkens, H. 1977. Die Rudimentation des Rumpfkanals bei cavernicolen Populationen des Astyanax (Characidae, Pisces). Experientia 33: 604–605.Google Scholar
  79. Wilkens, H. 1980. Prinzipien der Manifestation polygener Systeme. Z. Zool. Syst. Evolutionsforschung 18: 103–111.Google Scholar
  80. Wilkens, H. 1984. Zur Evolution von Polygensystemen, untersucht an ober- and unterirdischen Populationen des Astyanax mexicanus (Characidae, Pisces). Z. Zool. Syst. Evolutionsforschung Beih. 3: 55–71.Google Scholar
  81. Wilkens, H. & J. Burns 1972. A new Anoptichthys cave population (Characidae, Pisces). Ann. Spéléol. 27: 263–270.Google Scholar
  82. Wilkens, H. & K. Hüppop. 1986. Sympatric speciation in cave fishes? Studies on a mixed population of epi- and hypogean Astyanax (Characidae, Pisces). Z. Zool. Syst. Evolutionsforschung. (in press).Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • Kathrin Hüppop
    • 1
  1. 1.Zoologisches Institut und Zoologisches MuseumUniversität HamburgHamburg 13Federal Republic of Germany

Personalised recommendations