Environmental Biology of Fishes

, Volume 17, Issue 4, pp 281–290

Reconciling the two methods of measuring upper lethal temperatures in fishes

  • D. Marc Kilgour
  • Robert W. McCauley


The models developed here provide a precise quantitative description of the course of the thermal destruction experienced by fish during a slow heating experiment. However, a broader view of this work is that each of the abrupt transfer and slow heating techniques determines experimentally a functional relationship; the interdependence of these functional relationships is the actual focus of this study. In particular, it is shown that data from either type of experiment can be used to predict the observations from an experiment of the other type under certain assumptions.


Critical thermal maxima Mathematical models Thermal acclimation Upper incipient lethal temperatures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Becker, C.D. & R.G. Genoway. 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Env. Biol. Fish. 4: 245–256.Google Scholar
  2. Brett, J.R. 1944. Tempering versus acclimation in the planting of speckled trout. Trans. Amer. Fish. Sec. 70: 397–403.Google Scholar
  3. Brett, J.R. 1946. Rate of gain of heat tolerance in goldfish. Carassius auratus. Univ. Toronto Studies, Biol. Ser. 53, Ontario Fish. Res. Lab. Publ. 64: 9–28.Google Scholar
  4. Brett, J.R. 1952. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Board Can. 9: 265–323.Google Scholar
  5. Brett, J.R. 1956. Some principles in the thermal requirements of fishes. Quart. Rev. Biol. 31: 75–87.Google Scholar
  6. Brown, H.W. 1976. Handbook of the effects of temperature on some North American fishes. American Electric Power Service Corporation, Canton. 524 pp.Google Scholar
  7. Brown, M.E. 1957. The physiology of fishes. Vol 1— Metabolism. Vol 2 — Behavior. Academic Press, London.Google Scholar
  8. Cocking, A.W. 1959. The effects of high temperatures on roach (Rutilus rutilus).II. The effects of temperature increasing at a known rate. J. Exp. Biol. 36: 217–226.Google Scholar
  9. Coutant, C.C. 1972. Time-temperature relationships for thermal resistances of aquatic organisms, principally fish. Oak Ridge National Laboratory, Oak Ridge (ORNLEIS, 72–27). 100 pp.Google Scholar
  10. Cox, D.K. 1974. Effects of three heating rates on the critical thermal maximum of bluegill. pp. 158–163. In: J.W. Gibbons & R.R. Sharitz (ed.) Thermal Ecology, CONF-730505, Technical Information Centre, Atomic Energy Commission, Springfield.Google Scholar
  11. Doudoroff, P. 1942. Reactions of marine fishes to temperature changes. I. Experiments with Girella nigricans (Ayres). Biol. Bull. 83: 219–244.Google Scholar
  12. Doudoroff, P. 1945. The resistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops. Biol. Bull. 88: 194–206.Google Scholar
  13. Fry, F.E.J. 1947. Effects of the environment on animal activity. Univ. Toronto Studies, Biol. Ser. 55, Ontario Fish. Res. Lab. Publ. 68: 1–62.Google Scholar
  14. Fry, F.E.J. 1967. Responses of vertebrate poikilotherms to temperature. pp. 375–409. In: A.H. Rose (ed.) Thermobiology, Academic Press, New York.Google Scholar
  15. Fry, F.E.J., J.S. Hart & N.F. Walker. 1946. Lethal temperature relations for a sample of young speckled trout, Salvelinus fontinalis. Univ. Toronto Studies, Biol. Set. 54, Ontario Fish. Res. Lab. Publ. 66: 9–35.Google Scholar
  16. Houston, A.H. 1982. Thermal effects upon fishes. Publication No. NRCC 18566, Environmental Secretariat, National Research Council of Canada. Ottawa. 200 pp.Google Scholar
  17. Hutchinson, V.H. 1976. Factors influencing thermal tolerances of individual organisms. pp. 10–26. In: G.W. Esch & R.W. McFarlane (ed.) Thermal Ecology II, CONF-750425, Nat. Tech. Inf. Serv., Springfield.Google Scholar
  18. Ihssen, P. 1971. The inheritance of thermal resistance in hybrids of Salvelinus fontinalis (Mitch.) and Salvelinus namaycush (Walb.). Ph.D. Thesis, University of Toronto, Toronto. 226 pp.Google Scholar
  19. Jacobs, M.H. 1919. Acclimatization as a factor affecting the upper thermal death point of organisms. J. Exp. Zool. 27: 427–440.Google Scholar
  20. Jaske, R.T., W.T. Templeton & C.C. Coutant. 1970. Methods for evaluating the effects of transient conditions in heavily loaded and extensively regulated streams. Chemical Engineering Progress, Symposium Series 107: 31–37.Google Scholar
  21. Jobling, M. 1981. Temperature tolerance and the final preferendum — rapid methods for the assessment of optimum growth temperatures. J. Fish Biol. 19: 439–455.Google Scholar
  22. Kilgour, D.M., R.W. McCauley & W. Kwain. 1985. Modeling the lethal effects of high temperature on fish. Can. J. Fish. Aquat. Sci. 42: 947–951.Google Scholar
  23. McCauley, R.W. & F.P. Binkowski. 1982. Thermal tolerance of the alewife. Trans. Amer. Fish. Soc. 111: 389–391.Google Scholar
  24. McFarlane, R.W., B.C. Moore & S.E. Williams. 1976. Thermal tolerance of stream cyprinid minnows. pp. 141–144. In: G.W. Esch & R.W. McFarlane (ed.) Thermal Ecology II, CONF-750425, Nat. Tech. Inf. Serv., Springfield.Google Scholar
  25. Otto, R.G., M.A. Kitchell & J.O. Rice. 1976. Lethal and preferred temperatures of the alewife (Alosa pseudoharengus) in Lake Michigan. Trans. Amer. Fish. Soc. 105: 96–106.Google Scholar
  26. Paladino, F.V., J.R. Spotila, J.P. Schubauer & K.T. Kowalski. 1980. The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fishes. Rev. Can. Biol. 39: 115–122.Google Scholar
  27. Reynolds, W.W. & M.E. Casterlin. 1979. Behavioral thermal regulation and the ‘final preferendum’ paradigm. Amer. Zool. 19: 211–224.Google Scholar
  28. Spigarelli, S.A., G.P. Romberg, W. Prepejchal & M.M. Thommes. 1974. Body temperature characteristics of fish at a thermal discharge on Lake Michigan, pp. 119–132. In: J.W. Gibbons & R.R. Sharitz (ed.) Thermal Ecology, CONF-730505, Technical Information Centre, Atomic Energy Commission, Springfield.Google Scholar
  29. Stevens, E.D. & F.E.J. Fry. 1970. The rate of thermal exchange in a teleost Tilapia mossambica. Can. J. Zool. 48: 221–226.Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • D. Marc Kilgour
    • 1
  • Robert W. McCauley
    • 2
  1. 1.Department of MathematicsWilfrid Laurier UniversityWaterloo, OntarioCanada
  2. 2.Department of BiologyWilfrid Laurier UniversityWaterloo, OntarioCanada

Personalised recommendations