Environmental Biology of Fishes

, Volume 24, Issue 3, pp 199–218 | Cite as

Trophic ecomorphology in eastern Pacific blennioid fishes: character transformation of oral jaws and associated change of their biological roles

  • Kurt Kotrschal
Full paper


The ecomorphological relationships between the oral jaws and food spectra were highlighted in 34 species of Gulf of California blennioid fishes (5 Tripterygiidae, 13 Labrisomidae, 11 Chaenopsidae and 5 Blenniidae). Twenty-nine species are microcarnivorous, two are omnivorous browsers, two are algae grazers and one was an ‘ectoparasite’ feeder. The spectrum of oral (as opposed to pharyngeal) jaw (OJA) morphology ranges from plesiomorphic, suction-feeding (relatively large, protrusible jaws, with many coniform-caniniform teeth) to apomorphic, biting (relatively small, non protrusible jaws, with a single row of incisiform teeth). As species with similar morphology may widely differ in food, it is concluded, that morphology is not a reliable predictor for ecology in this case. With the exception of a few specialists, species with apomorphic, biting OJA utilize sessile items in addition to mobile categories and thus show a higher food diversity as compared to species with plesiomorphic OJA. Thus in the present case morphological differentiation goes along with ecological generalization. Only three blenniid species with the most apomorphic OJA may be considered as specialized also with regard to food resource utilization. Transformation of morphological characters and the ecological role of the OJA of blennioids may serve as a model to illustrate the steps required to achieve a biting-browsing and grazing feeding apparatus in many taxa of modern acanthopterygian reef fishes.

Key words

Blenniidae Chaenopsidae Evolution Generalization Labrisomidae Morphological series Oral jaw apparatus Specialization Tripterygiidae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Barel, C.D.N. 1983. Towards a constructional morphology of cichlid fishes. Neth. J. Zool. 33: 357–424.Google Scholar
  2. Bennett, B.A. 1984. A population energy budget for Clinus superciliosus L. with an assessment of the role of resident fish as predators in the intertidal zone. Mar. Biol. Letters 5: 323–334.Google Scholar
  3. Bock, W.J. 1970. Microevolutionary sequences as a fundamental concept in macroevolutionary models. Evolution 24: 704–722.CrossRefGoogle Scholar
  4. Bock, W.J. 1972. Species interactions and macroevolution. Evol. Biol. 5: 1–24.Google Scholar
  5. Bock, W.J. 1980. The definition and recognition of biological adaptation. Amer. Zool. 20: 217–227.Google Scholar
  6. Bock, W.J. & G. von Wahlert. 1965. Adaptation and the form-function complex. Evolution 19: 269–299.CrossRefGoogle Scholar
  7. Brower, J.E. & J.H. Zar. 1977. Field and laboratory methods for general ecology. W.C. Brown, Dubuque. 194 pp.Google Scholar
  8. Clements, W.H. & R.J. Livingston. 1984. Prey selectivity of the fringed filefish Monacanthus ciliatus (Pisces: Monacanthidae): role of prey accessibility. Mar. Ecol.-Progr. Ser. 16: 291–295.Google Scholar
  9. De Martini, E.E. 1969. A correlative study of the ecology and comparative feeding mechanism morphoology of the Embiotocidae (surf-fishes) as evidence of the family's adaptive radiation into available ecological niches. Wasmann J. Biol. 27: 177–247.Google Scholar
  10. Eldredge, N. & J. Cracraft. 1980. Phylogenetic patterns and the evolutionary process. Columbia University Press, New York. 320 pp.Google Scholar
  11. Emery, A.R. 1973. Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull. Mar. Sci. 23: 649–770.Google Scholar
  12. Fryer, F. & T.D. Iles. 1972. The cichlid fishes of the Great Lakes of Africa. Their biology and evolution. Oliver & Boyd, Edinburgh. 641 pp.Google Scholar
  13. Gatz, J.A. 1979a. Community organization in fishes as indicated by morphological features. Ecology 60: 711–718.CrossRefGoogle Scholar
  14. Gatz, J.A. 1979b. Ecological morphology of freshwater fishes. Tulane Stud. Zool. Bot. 21: 91–124.Google Scholar
  15. George, A. & V.G. Springer. 1980. Revision of the clinid fish Ophicliniini including 5 new species and definition of the family Clinidae. Smiths. Contrib. Zool. 307: 1–31.Google Scholar
  16. Goldschmid, A. & K. Kotrschal. 1985. Morphological and functional adaptations in different feeding types of blennies (Perciformes; Teleostei). Fortschr. Zool. 30: 241–244.Google Scholar
  17. Goldschmid, A. & K. Kotrschal. 1988. Ecomorphology: development and concepts. Fortschr. Zool. 36: (in press).Google Scholar
  18. Gosline, W.A. 1968. The suborder perciform fishes. Proc. U.S. Nat. Mus. 124: 1–78.Google Scholar
  19. Gosline, W.A. 1987. Jaw structures and movements in higher teleostean fishes. Jap. J. Ichthyol. 34: 21–32.Google Scholar
  20. Gould, S.J. 1984. Morphological channeling by structural constraint: convergence in styles of dwarfing and gigantism in Cerion, with a description of two new fossil species and a report on the discovery of the largest Cerion. Palaeobiology 10: 172–194.Google Scholar
  21. Greenwood, P.H., D.E. Rosen, S.H. Weitzmann & G.S. Myers. 1966. Phyletic studies of teleostean fishes with a provisional classification of living forms. Bull. Amer. Mus. Nat. Hist. 131: 339–456.Google Scholar
  22. Grossman, G.D. 1986. Food resource partitioning in a rocky intertidal fish assemblage. J. Zool. Lond. (B) 1: 317–355.CrossRefGoogle Scholar
  23. Hennig, W. 1950. Grundzüge einer Theorie der phylogenetischen Systematik. Dr. Zentralverlag, Berlin. 420 pp.Google Scholar
  24. Hobson, E.S. 1972. Activity of the Hawaiian reef fishes during the evening and morning transitions between daylight and darkness. U.S. Fish. Bull. 70: 715–740.Google Scholar
  25. Horn, H.S. 1966. Measurement of ‘overlap’ in comparative ecological studies. Amer. Nat. 100: 419–424.CrossRefGoogle Scholar
  26. Hubbs, C. 1952. A contribution to the classification of the blennioid fishes of the family Clinidae, with a partial revision of the eastern Pacific forms. Stanford Ichthyol. Bull. 4: 87–165.Google Scholar
  27. Hynes, B.N. 1950. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. J. Anim. Ecol. 19: 36–58.CrossRefGoogle Scholar
  28. Jones, J.P. & M.D. Norman. 1986. Feeding selectivity in relation to territory size in a herbivorous reef fish. Oecologia (Berl.) 68: 549–555.CrossRefGoogle Scholar
  29. Karr, J.R. & F.C. James. 1975. Ecomorphological configurations and convergent evolution in species and communities. pp. 258–291. In: M.L. Cody & J.M. Diamond (ed.) Ecology and Evolution of Communities, Belknap Press, Campbridge.Google Scholar
  30. Keast, A. & D. Webb. 1966. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. J. Fish. Res. Board Can. 23: 1845–1874.Google Scholar
  31. Kotrschal, K. 1987. Evolutionary patterns in tropical marine reef fishes. Z. zool. Syst. Evolut-forsch. 26: 51–64.CrossRefGoogle Scholar
  32. Kotrschal, K. & A. Goldschmid. 1983. Food preferences, morphology and arrangement of teeth in 14 species of Adriatic blennies. Thalassia Jugoslavica 19: 217–219.Google Scholar
  33. Kotrschal, K. & D.G. Lindquist. 1986. The feeding apparatus in four Pacific tube blennies (Teleostei: Chaenopsidae): lack of ecomorphological divergence in syntopic species. P. S. Z. N. L: Mar. Ecol. 7: 241–254.CrossRefGoogle Scholar
  34. Kotrschal, K. & D.A. Thomson. 1986. Feeding patterns in eastern tropical Pacific blennioid fishes (Teleostei: Tripterygiidae, Labrisomidae, Chaenopsidae, Blenniidae). Oecologia (Berl.) 70: 367–378.CrossRefGoogle Scholar
  35. Kotrschal, K. & D.A. Thomson. 1988. From suckers towards pickers and biters: Evolutionary patterns in trophic ecomorphology of tropical marine reef fishes. Fortschr. Zool. 36: (in press).Google Scholar
  36. Lack, D. 1947. Darwin's finches. Cambridge University Press, Cambridge. Reprint 1983. 208 pp.Google Scholar
  37. Lauder, G.V. 1981. Form and function: structural analysis in evolutionary morphology. Palaeobiology 7: 430–442.Google Scholar
  38. Lauder, G.V. 1982. Historical biology and the problem of design. J. theoret. Biol. 97: 57–67.CrossRefGoogle Scholar
  39. Lauder, G.V. & K.F. Liem. 1983. Patterns of diversity and evolution in ray-finned fishes. pp. 1–25. In: R.G. Northcutt & R.E. Davis (ed.) Fish Neurobiology, Vol. 1, University of Michigan Press, Ann Arbor.Google Scholar
  40. Lederer, H.F. 1984. A review of avian ecomorphological hypotheses. Ökol. Vögel 6: 119–126.Google Scholar
  41. Leisler, B. & H. Winkler. 1985. Ecomorphology. pp. 155–186. In: R.F. Johnston (ed.) Current Ornithology, Vol. 2., Plenum Publ. Corp., New York.Google Scholar
  42. Liem, K.F. 1978. Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlid fishes. I. Piscivores. J. Morphol. 158: 323–360.CrossRefGoogle Scholar
  43. Liem, K.F. 1979. Modulatory multiplicity in the feeding mechanism in cichlid fishes, as exemplified by the invertebrate pickers of Lake Tanganyika. J. Zool. Lond. 189: 93–125.CrossRefGoogle Scholar
  44. Liem, K.F. 1980. Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishes. Amer. Zool. 20: 295–314.Google Scholar
  45. Losey, G. S. 1972. Predation protection in the poison fang blenny, Meiacanthus atrodorsalis and its mimics, Escenius bicolor and Runula laudandus (Blenniidae). Pacific Sci. 26: 129–139.Google Scholar
  46. Main, K.L. 1985. The influence of prey identity and size on selection of prey by two marine fishes. J. Exp. Mar. Biol. Ecol. 88: 145–152.CrossRefGoogle Scholar
  47. McKaye, K.R. & A. Marsh. 1983. Food switching by two specialized algae-scraping cichlid fishes in Lake Malawi, Africa. Oecologia (Berl.) 56: 245–248.CrossRefGoogle Scholar
  48. Miller, G.L. 1984. Seasonal changes in morphological structuring in a guild of benthic stream fishes. Oecologia (Berl.) 63: 106–109.CrossRefGoogle Scholar
  49. Montgomery, W.L. 1980. Comparative feeding ecology of two herbivorous damselfishes (Pomacentridae: Teleostei) from the Gulf of California, Mexico. J. exp. mar. Biol. Ecol. 47: 9–24.CrossRefGoogle Scholar
  50. Nelson, J.S. 1984. Fishes of the world. 2nd ed. Wiley - Interscience, New York. 523 pp.Google Scholar
  51. Nelson, W.G. 1979. Experimental studies of selective predation on amphipods: consequences for amphipod distribution and abundance. J. exp. mar. Biol. Ecol. 38: 225–245.CrossRefGoogle Scholar
  52. Osse, J.W.M. 1985. Jaw protrusion, an optimization of the feeding apparatus of teleosts. Acta Biotheoretica 34: 219–232.CrossRefGoogle Scholar
  53. Rosen, D.E. 1982. Teleostean interrelationships, morphological function and evolutionary inference. Amer. Zool. 22: 261–273.Google Scholar
  54. Rosenblatt, R.H. & J.S. Stephens, Jr. 1978. Mccoskerichthys sandae, a new and unusual chaenopsid blenny from the Pacific coast of Panama and Costa Rica. Los Angeles County Museum Contrib. Mar. Sci. 293: 1–22.Google Scholar
  55. Schoener, T.W. 1971. Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2: 369–404.CrossRefGoogle Scholar
  56. Sheldon, A.L. 1968. Species diversity and longitudinal succession in streamfishes. Ecology 49: 193–198.CrossRefGoogle Scholar
  57. Simpson, G.G. 1944. Tempo and mode in evolution. Columbia Univ. Press, New York. 270 pp.Google Scholar
  58. Smith-Vaniz, W.F. 1976. The sabre-toothed blennies, tribe Nemophiini (Pisces, Blenniidae). Acad. Nat. Sci. Philadelphia, Monograph 19. 196 pp.Google Scholar
  59. Springer, V.G. 1968. Osteology and classification of the fishes of the family Blenniidae. Bull. U.S. Natl. Mus. 284: 1–85.Google Scholar
  60. Stephens, J.S., Jr. 1963. A revised classification of the blennioid fishes of the American family Chaenopsidae. Univ. Calif. Pub. Zool. 68. 165 pp.Google Scholar
  61. Thomson, D.A., L.T. Findley & A.N. Kerstitch. 1979. Reef fishes of the Sea of Cortez: The rocky-shore fishes of the Gulf of California. J. Wiley & Sons, New York. 302 pp.Google Scholar
  62. Thomson, D.A., & M.R. Gilligan. 1983. The rocky shore fishes. pp. 98–129. In: T.J. Case & M.L. Cody (ed.) Island Biogeography in the Sea of Cortez, University of California Press, Berkeley.Google Scholar
  63. Walker, B.W. 1960. The distribution and affinities of the marine fish fauna of the Gulf of California. Syst. Zool. 9: 123–133.CrossRefGoogle Scholar
  64. Werner, E.E. 1977. Species packing and niche complementary in three sunfishes. Amer. Nat. 111: 553–577.CrossRefGoogle Scholar
  65. Wiens, J.A. & J.T. Rotenberry. 1980. Patterns of morphology and ecology in grassland and shrub steppe bird populations. Ecol. Monogr. 50: 287–308.CrossRefGoogle Scholar
  66. Wishart, D. 1984. Clustan. G. Fischer, Stuttgart. 185 + 59 pp.Google Scholar
  67. Yamaoka, K. 1982. Morphology and feeding behavior of five species of genus Petrochromis (Teleostei, Cichlidae). Physiology and Ecology Japan 19: 57–75.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Kurt Kotrschal
    • 1
  1. 1.Zoologisches Institut der Universität SalzburgSalzburgAustria

Personalised recommendations