Advertisement

Environmental Biology of Fishes

, Volume 8, Issue 3–4, pp 249–254 | Cite as

Diel colour changes in the neon tetraParacheirodon innesi

  • John N. Lythgoe
  • Julia Shand
Other paper from the conference

Synopsis

In the daytime the neon tetraParacheirodon innesi has an iridescent blue-green lateral stripe and a red ventral area. At night the lateral stripe becomes deep violet and the ventral area fades. The iridescent colours are produced by constructive interference from regular stacks of thin reflecting plates in dermal iridophores. Colour changes of the reflected light result from changes in the spacing of the plates which is caused by the direct action of light on the skin, and also by emotional arousal. Fading in the red areas is due to the migration of pigment granules within the chromatophore. On the basis of existing measurements of spectral transmission of Amazon waters, where the fish are thought to live in nature, and microspectro-photometric measurements of visual pigments in the visual cells it is concluded that neon and cardinal tetras are conspicuous in the daytime when they are active, and camouflaged at night when they are inactive.

Keywords

Body colour patterns Iridescence Camouflage Conspicuousness Emotional arousal Water colour Circadian rhythm Chromatophores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Axelrod, H.R. 1980. Cardinal tetras. T.F.H. Publications, Neptune City. 93 pp.Google Scholar
  2. Bagnara, J.T. & Mac.E. Hadley. 1973. Chromatophores and colour change. Prentice Hall, Englewood Cliffs. 202 ppGoogle Scholar
  3. Bowmaker, J.K. & H.J.A. Dartnall. 1980. Visual pigments of rods and cones in a human retina. J. Physiol. 298: 501–512.Google Scholar
  4. Denton, E.J. & M.F. Land. 1971. Mechanism of reflexion on silvery layers of fish and cephalopods. Proc. Roy. Soc. B. 178: 43–61.Google Scholar
  5. Foster, K.W. 1933. Color changes in Fundulus with special reference to the color of the iridosomes. Proc. Nat. Acad. Sci. Washington 19: 535–540.Google Scholar
  6. Foster, K.W. 1937. The blue phase in the color changes of fish with special reference to the role of guanin deposits in the skin of Fundulus heteroclitus. J. Exp. Zool. 77: 169–214.Google Scholar
  7. Fox, H.M. & G. Vevers. 1960. The nature of animal colours. Sidgwick and Jackson, London. 246 pp Hobson, E.S. 1965. Diurnal-nocturnal activity of some inshore fishes in the Gulf of California. Copeia 3: 291–302Google Scholar
  8. Fox, H.M. & G. Vevers. 1960. The nature of animal colours. Sidgwick and Jackson, London. 246 pp Hobson, E.S. 1965. Diurnal-nocturnal activity of some inshore fishes in the Gulf of California. Copeia 3: 291–302.Google Scholar
  9. Hogben, L.T. & D. Slome. 1931. The pigmentary effector system IV. The dual character of endocrine co-ordination in amphibian colour change. Proc. Roy. Soc. B. 108: 10–53Google Scholar
  10. Land, M.F. 1972. The physics and biology of animal reflectors. Prog. biophys. molec. Biol. 24: 75–106.Google Scholar
  11. Levine, J.S. & E.F. MacNichol Jr. 1979. Visual pigments in teleost fishes: effects of habitat microhabitat and behavior on visual system evolution. Sens. Process. 3: 95–130.Google Scholar
  12. Lythgoe, J.N. 1971. Vision. pp. 130–140. In: J.D. Woods & J.N. Lythgoe (ed.) Underwater Science, Oxford University Press,Oxford.Google Scholar
  13. Lythgoe, J.N. 1979. The ecology of vision. Clarendon Press, Oxford. 244 pp.Google Scholar
  14. Lythgoe, J.N. & D.P.M. Northmore. 1973. Colours underwater. Color 73: 78–98.Google Scholar
  15. Lythgoe, J.N. & J. Shand. 1982. Changes in spectral reflexions from the iridophores of the neon tetra. J. Physiol. 325: 23–34.Google Scholar
  16. McFarland, W.N. & F.W. Munz. 1975. The visible spectrum during twilight and its implications for vision. pp. 249–270. In: G.C. Evans, R. Bainbridge & O. Rackham (ed.) Light asan Ecological Factor, Blackwell, Oxford.Google Scholar
  17. Muntz, W.R.A. 1978. A penetracao de luz nas áquas de Rio Amaznicos. Acta Amaznica 8: 613–619.Google Scholar
  18. Muntz, W.R.A. & J.R. Cronley Dillon. 1966. Colour discrimination in a goldfish. Anim. Behav. 14: 351–355.Google Scholar
  19. Pantin, C.F.A. 1946. Notes on microscopical technique for zoologists. Cambridge University Press. 77 pp.Google Scholar
  20. Muntz, W.R.A. & J.R. Cronley Dillon. 1966. Colour discrimination in a goldfish. Anim. Behav. 14: 351–355 Rohrlich, S.T. 1974. Fine structural demonstration of ordered arrays of cytoplasmic filaments in vertebrate iridophores. J. Cell Biol. 62: 295–304.Google Scholar
  21. Stell, W.K. & F.I. Harosi. 1976. Cone structure and visual pigment content in the retina of the goldfish. Vis. Res. 16: 647–657.Google Scholar
  22. Tinbergen, N. 1951. The study of instinct. Clarendon Press,Oxford, 228 pp.Google Scholar
  23. Walls, G.L. 1942. The vertebrate eye and its adaptive radiation.Hafner, New York. 785 pp.Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • John N. Lythgoe
    • 1
  • Julia Shand
    • 1
  1. 1.Department of ZoologyUniversity of BristolBristolEngland

Personalised recommendations