Advertisement

Environmental Biology of Fishes

, Volume 5, Issue 1, pp 79–93 | Cite as

A review of some physiological and toxicological responses of freshwater fish to acid stress

  • Paul O. Fromm
Review

Synopsis

Data relating to the specific effect of low pH on growth of freshwater fishes are ambiguous. Reproductive failure resulting from acid stress appears to be related to an upset in calcium metabolism and to faulty deposition of protein in developing oocytes. It appears that the ’no effect‘ level of pH depression for successful reproduction is around 6.5. Data on behaviorial responses of freshwater fish to acid stress and CO2 are described. Most fish appear to be indifferent to pH within the range of approximately 10.5 to 5.5 and between 7.4 and 4.5 CO2 appears to be the main directive factor. In cases of severe acid stress alteration of gill membranes and/or coagulation of gill mucus occurs and death due to hypoxia may result from a lengthening of the water-blood diffusion distance. Several reports agree that acid stress causes an upset of electrolyte homeostasis in fish but effects of low pH on osmotic permeability are largely lacking. Most hatcheryreared salmonids can tolerate pH 5.0 indefinitely but below this level the homeostatic electrolyte and osmotic regulatory mechanisms become inadequate. When fish are subjected to debilitating acid stress blood pH decreases possibly as the result of flux of H+ ions across gill membranes into the blood. This could change transepithelial potential and allow a blood, to-water diffusion of Na+ ions down an electrochemical gradient. Lowered ambient pH may interfere with gill calcium levels increasing permeability to both H+ and Na+ ions or an acidemia may occur as the result of a decrease in the excretion of metabolically produced H+ ions and CO2. When the capacity of the buffer mechanisms is exceeded the blood pH drops and the capacity of hemoglobin to transport oxygen is decreased.

Keywords

Environment Acidity Toxicity Pollution Behavior Respiration Blood Oxygen transport Electrolytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Beamish, R. J. 1974. Loss of fish populations from unexploited remote lakes in Ontario, Canada as a consequence of atmospheric fallout of acid. Water Res. 8: 85–95.CrossRefGoogle Scholar
  2. Beamish, R. J. 1976. Acidification of lakes in Canada by acid precipitation and resulting effects on fishes. Water, Air and Soil Poll. 6: 501–514.CrossRefGoogle Scholar
  3. Beamish, R. J., W. L. Lockhart, J. C. Van Loon & H. H. Harvey 1975. Long term acidification of a lake and resulting effect on fishes. Ambio 4: 98–102.Google Scholar
  4. Cameron, J. N. 1976. Branchial ion uptake in Arctic grayling: resting values and effects of acid-base disturbance. J. Exp. Biol. 64: 711–725.Google Scholar
  5. Cameron, J. N. & D. J. Randall. 1972. The effect of increased ambient CO2 on arterial CO2 tension, CO2 content and pH in rainbow trout. J. Exp. Biol. 57: 673–680.Google Scholar
  6. Cogbill, C. V. & G. E. Likens. 1974. Acid precipitation in northeastern United States. Water Resour. Res. 10: 1133–1137.CrossRefGoogle Scholar
  7. Craig, G. R. & W. F. Baksi. 1977. The effects of depressed pH on flagfish reproduction, growth and survival. Water Res. 11: 621–626.CrossRefGoogle Scholar
  8. Daye, P. G. & E. T. Garside. 1976, Histopathologic changes in surficial tissues of brook trout, Salvelinus fontinalis (Mitchill), exposed to acute and chronic levels of pH. Can. J. Zool. 54: 2140–2155.Google Scholar
  9. Daye, P. G. & E. T. Garside. 1977. Lower lethal levels of pH for embryos and alevins of Atlantic salmon, Salmo salar L. Can. J. Zool. 55: 1504–1508.CrossRefGoogle Scholar
  10. Dively, J. L., J. E. Mudge, W. H. Neff & A. Anthony. 1977. Blood PO2, PCO 2 and pH changes in brook trout (Salvelinus fontinalis) exposed to sublethal levels of acidity. Comp. Biochem. Physiol. 57 (A): 347–351.CrossRefGoogle Scholar
  11. Doudoroff, P. & M. Katz. 1950. Critical review of literature on the toxicity of industrial wastes and their components to fish. I. Alkalies, acids and inorganic gases. Sew. and Ind. Wastes 22: 1432–1458.Google Scholar
  12. Dovland, H., E. Joranger & A. Semb. 1976. Deposition of air pollutants in Norway. pp. 15–35. In: F. H. Braekke (ed.) Impact of acid precipitations on forest and freshwater ecosystems in Norway. SNSF-project FR 6/76.Google Scholar
  13. Dunson, W. A., F. Swarts & M. Silvestri. 1977. Exceptional tolerance to low pH of some tropical blackwater fish. J. Exp. Zool. 201: 157–162.CrossRefGoogle Scholar
  14. Eddy, F. B. 1974. In vitro blood carbon dioxide of the rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 47 (A): 129–140.CrossRefGoogle Scholar
  15. Eddy, F. B. 1976. Acid-base balance in rainbow trout (Salmo gairdneri) subjected to acid stresses. J. Exp. Biol. 64: 159–171.Google Scholar
  16. Eddy, F. B., J. P. Lomholt, R. E. Weber & K. Johansen. 1977. Blood respiratory properties of rainbow trout (Salmo gairdneri) kept in water of high CO2 tension. J. Ext. Biol. 67: 37–47.Google Scholar
  17. Ellis, M. M. 1937. Detection and measurement of stream pollution. Bull. No. 22, U.S. Bureau of Fisheries. Bull. Bur. Fisheries 48: 365–437.Google Scholar
  18. European Inland Fisheries Advisory Committee. 1969. Water quality criteria for European freshwater fish — extreme pH values and inland fisheries. Water Res. 3: 593–611.CrossRefGoogle Scholar
  19. Evans, D. H. 1975. Ion exchange mechanisms in fish gills. Comp. Biochem. Physiol. 51 (A): 491–495.CrossRefGoogle Scholar
  20. Galloway, J. N., G. E. Likens & E. S. Egerton. 1976. Acid precipitation in the northeastern United States: pH and activity. Science 194: 722–724.Google Scholar
  21. Hargis, J. R. 1976. Ventilation and metabolic rate of young rainbow trout (Salmo gairdneri) exposed to sublethal environmental pH. J. Exp. Zool. 196: 39–44.CrossRefGoogle Scholar
  22. Hazel, J. R., W. S. Garlick & P. A. Sellner. 1978. The effect of assay temperature upon the pH optima of enzymes from poikilotherms: a test of the alpha imidazole hypothesis. J. Comp. Physiol. 123: 97–104.Google Scholar
  23. Höglund, L. B. 1961. The reactions of fish in concentration gradients. Rep. Inst. Freshw. Res. Drottningholm 43: 1–147.Google Scholar
  24. Höglund, L. B. & J. Härdig. 1969. Reactions of young salmonids to sudden changes of pH, carbon-dioxide tension and oxygen content. Rep. Inst. Freshw. Res. Drottningholm 49: 76–119.Google Scholar
  25. Houston, A. H. 1971. Some comments upon acid-base balance in teleost fishes and its relationship to environmental temperature. Comp. Biochem. Physiol. 40 (A): 535–542.CrossRefGoogle Scholar
  26. Howell, B. J., F. W. Baumgardner, K. Bondi & H. Rahn. 1970. Acid-base balance in poikilotherms as a function of body temperature. Am. J. Physiol. 218: 600–606.Google Scholar
  27. Hughes, G. M. 1972. Morphometrics of fish gills. Resp. Physiol. 14: 1–25.CrossRefGoogle Scholar
  28. Hughes, G. M. & M. Morgan. 1973. The structure of fish gills in relation to their respiratory function. Biol. Rev. 48: 419–475.Google Scholar
  29. Jacobsen, O. J. 1977. Brown trout (Salmo trutta L.) growth at reduced pH. Aquaculture 11: 81–84.CrossRefGoogle Scholar
  30. Janssen, R. G. & D. J. Randall. 1975. The effect of changes in pH and PCO 2 in blood and water on breathing in rainbow trout, Salmo gairdneri. Resp. Physiol. 25: 23–245.CrossRefGoogle Scholar
  31. Jones, J. R. E. 1964. Fish and River Pollution. Butterworth, London. 203 pp.Google Scholar
  32. Ketstetter, T. H. & R. Mize. 1976. Responses of trout gill ion transport systems to acute acidosis. J. Exp. Biol. 64: 511–515.Google Scholar
  33. Kirk, W. L. 1974. The effects of hypoxia on certain blood and tissue electrolytes of channel catfish, Ictalurus punctatus (Rafrnesque). Trans. Amer. Fish. Soc. 103: 593–600.CrossRefGoogle Scholar
  34. Kwain, W. 1975. Effects of temperature on development and survival of rainbow trout, Salmo gairdneri, in acid waters. J. Fish. Res. Board Can. 32: 493–497.Google Scholar
  35. Leivestad, H., G. Hendrey, I. P. Muniz & E. Snekvik. 1976. Effects of acid precipitation on freshwater organisms. pp. 87–111. In: F. H. Braekke (ed.) Impact of acid precipitation on forest and freshwater ecosystems in Norway. SNSF-project FR 6/76.Google Scholar
  36. Leivestad, H. & I. P. Muniz. 1976. Fish kill at low pH in a Norwegian river. Nature 259: 391–392.CrossRefGoogle Scholar
  37. Lloyd, R. & D. H. M. Jordan. 1964. Some factors affecting the resistance of rainbow trout (Salmo gairdneri, Richardson) to acid waters. Int. J. Air Wat. Poll. 8: 393–403.Google Scholar
  38. Lockhart, W. L. & A. Lutz. 1977. Preliminary biochemical observations of fishes inhabiting an acidified lake in Ontario, Canada. Water, Air and Soil 317–332.Google Scholar
  39. Mazeaud, M. M., F. Mazeaud & E. M. Donaldson. 1977. Primary and secondary effects of stress in fish: some new data with a general review. Trans. Amer. Fish. Soc. 106: 201–212.CrossRefGoogle Scholar
  40. McWilliams, P. G. & W. T. W. Potts. 1978. The effects of pH and calcium concentrations on gill potentials in the brown trout, Salmo trutta. J. Comp. Physiol. 126: 277–286.Google Scholar
  41. Menendez, R. 1976. Chronic effects of reduced pH on brook trout (Salvelinus fontinalis). J. Fish. Res. Board Can. 33: 118–123.Google Scholar
  42. Mount, D. I. 1973. Chronic effect of low pH on fathead minnow survival, growth and reproduction. Water Res. 7: 987–993.CrossRefGoogle Scholar
  43. Mudge, J. E., J. L. Dively, W. H. Neff & A. Anthony. 1977. Interrenal histochemistry of acid-exposed brook trout, Salvelinus fontinalis (Mitchell). Gen. Comp. Endo. 31: 208–215.CrossRefGoogle Scholar
  44. Neville, C. M. 1979a Ventilatory response of rainbow trout (Salmo gairdneri) to increased H+ ion concentration in blood and water. Comp. Biochem. Physiol. 63A: 373–376.CrossRefGoogle Scholar
  45. Neville, C. M. 1979b. Sublethal effects of environmental acidification on rainbow trout (Salmo gairdneri). Jour. Fish. Res. Board Can. 36: 84–87.Google Scholar
  46. Packer, R. K. & W. A. Dunson. 1970. Effects of low environmental pH on blood pH and sodium balance of brook trout. J. Exp. Zool. 174: 65–72.CrossRefGoogle Scholar
  47. Packer, R. K. & W. A. Dunson. 1972. Anoxia and sodium loss associated with the death of brook trout at low pH. Comp. Biochem. Physiol. 41 (A): 17–26.CrossRefGoogle Scholar
  48. Powers, E. B. 1921. The physiology of the respiration of fishes in relation to the hydrogen ion concentration of the medium. J. Gen. Physiol. 4: 305–317.CrossRefGoogle Scholar
  49. Randall, D. J. & J. N. Cameron. 1973. Respiratory control of arterial pH as temperature changes in rainbow trout Salmo gairdneri. Am. J. Physiol. 225: 997–1002.Google Scholar
  50. Reeves, R. B. 1977. The interaction of body temperature and acid-base balance in ectothermic vertebrates. Ann. Rev. Physiol. 39: 559–586.CrossRefGoogle Scholar
  51. Root, R. W. & L. Irving. 1943. The effect of carbon dioxide and lactic acid on the oxygen combining power of whole and hemolyzed blood of the marine fish Tautoga onitis (Linn.). Biol. Bull. 84: 207.Google Scholar
  52. Ruby, S. M., J. Aczel & G. R. Craig. 1977. The effects of depressed pH on oogenesis in flagfish Jordanella floridae. Water Res. 11: 757–762.CrossRefGoogle Scholar
  53. Shelford, V. E. & E. B. Powers. 1913. The reactions of fishes to gradients of dissolved atmospheric gases. J. Exp. Zool. 14: 207–266.CrossRefGoogle Scholar
  54. Townsend, L. D. & H. Cheyne. 1944. The influence of hydrogen ion concentration on the minimum dissolved oxygen toleration of the silver salmon, Oncorhynchus kisutch (Walbaum). Ecology 25: 461–466.CrossRefGoogle Scholar
  55. Trojnar, J. R. 1977. Egg hatchability and tolerance of brook trout (Salvelinus fontinalis) fry at low pH. J. Fish. Res. Board Can. 34: 574–579.Google Scholar
  56. Ultsch, G. R. & G. Gros. 1979. Mucus as a diffusion barrier to oxygen: possible role in O2 uptake at low pH in carp (Cyprinus carpio) gills. Comp. Biochem. Physiol. 62A: 685–689.CrossRefGoogle Scholar
  57. Vaala, S. S. 1972. Erythrocytic indices of stress in brook trout (Salvelinus fontinalis) exposed to sublethal levels of acidity. Diss. Abstr. 32.Google Scholar
  58. Vaala, S. S. & R. B. Mitchell. 1970. Blood oxygen-tension changes in acid-exposed brook trout. Penn. Acad. Sci. 44: 41–44.Google Scholar
  59. Westfall, B. A. 1945. Coagulation film anoxia in fishes. Ecology 26: 283–287.CrossRefGoogle Scholar
  60. Wiebe, A. H., A. M. McGavock, A. C. Fuller & H. C. Markus. 1934. The ability of freshwater fish to extract oxygen at different hydrogen ion concentrations. Physiol. Zool. 7: 435–448.Google Scholar
  61. Wood, C. M. & F. H. Caldwell. 1978. Renal regulation of acid-base balance in a freshwater fish. J. Exp. Zool. 205: 301–307.CrossRefGoogle Scholar
  62. Wood, C. M., B. R. McMahon & D. G. McDonald. 1977. An analysis of changes in blood pH following exhausting activity in the starry flounder, Platichthys stellatus. J. Exp. Biol. 69: 173–185.Google Scholar

Copyright information

© Dr. W. Junk B.V. Publishers 1980

Authors and Affiliations

  • Paul O. Fromm
    • 1
  1. 1.Department of PhysiologyMichigan State UniversityEast LansingU.S.A.

Personalised recommendations