3D Research

, 1:6

Digital holography for 3D imaging and display in the IR range: challenges and opportunities

  • Anna Pelagotti
  • Melania Paturzo
  • Andrea Geltrude
  • Massimiliano Locatelli
  • Riccardo Meucci
  • Pasquale Poggi
  • Pietro Ferraro
3DR Review


In analog holography, the infrared (IR) range received quite some attention, since it could provide interesting information, not achievable otherwise. Since digital sensors in this band became recently available and affordable, also digital holography (DH) expanded its feasibility beyond the visible wavelengths. In fact, the IR range allows shorter recording distances, unparalleled larger field of view and less stringent requirements on system stability, together with some specific characteristics, like e.g. the possibility to test IR glasses or other materials transparent to IR radiation, which cannot be controlled in visible range. In this paper we review the activities which took place in this field and illustrate the results achieved, referring to the opportunities this technique offers, and the challenges it presents. We show efficient reconstructions of holograms of objects of various materials, recorded with different resolution digital thermal cameras, in various configurations, and moreover we demonstrate optical holographic display through a liquid crystal based Spatial Light Modulator which gives the chance to get direct 3D imaging and display of long IR range. Moreover we believe this opens the route toward holography in THz region.


digital holography infrared radiation thermal camera infrared testing 


  1. 1.
    E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, R. Meucci, (2003) Digital holography at 10.6 micron, Opt. Commun. 215:257–262CrossRefGoogle Scholar
  2. 2.
    R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, (1978) Pulsed ir holography on Takiwax films. Appl. Opt. 17:3619CrossRefGoogle Scholar
  3. 3.
    R. M. Beaulieu, R. A. Lessard (1997) Review of recording media for holography at 10.6 μm, Proc. SPIE. 30112:98–305Google Scholar
  4. 4.
    S. Calixto (1988) Infrared recording with gelatin films. Appl. Opt. 27:1977–1983CrossRefGoogle Scholar
  5. 5.
    J. S. Chivian, R. N. Claytor, D. D. Eden (1969) Infrared holography at 10.6 μm. Appl. Phys. Lett. 15:123–125CrossRefGoogle Scholar
  6. 6.
    G. Decker et al (1972) Holography and Holographic interferometry with pulsed high-power lasers. Appl. Phys. Lett. 20:490CrossRefGoogle Scholar
  7. 7.
    S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, F. T. Arecchi (2008) Infrared digital reflective-holographic 3D shape measurements. Opt. Commun. 281:1445–1449CrossRefGoogle Scholar
  8. 8.
    P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, G. Pierattini (2003) Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Appl. Opt. 42:1938–1946CrossRefGoogle Scholar
  9. 9.
    P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, G. Coppola (2004) Recovering image resolution in reconstructing digital off-axis holograms by Fresneltransform method. Applied Physics Letters. 85:2709–2711CrossRefGoogle Scholar
  10. 10.
    P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, V. Striano (2005) Extended focused image in microscopy by digital holography. Opt. Express. 13:6738–6749CrossRefGoogle Scholar
  11. 11.
    P. Ferraro, M. Paturzo, P. Memmolo, A. Finizio (2009) Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms. Opt. Lett. 34:2787–2789CrossRefGoogle Scholar
  12. 12.
    S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, R. Meucci (2001) Whole optical wavefields reconstruction by digital holography. Opt. Express. 9: 294–302CrossRefGoogle Scholar
  13. 13.
    R. W. Meier (1965) “Magnification and Third-Order Aberrations in Holography,” J. Opt. Soc. Am. 55:987–992CrossRefGoogle Scholar
  14. 14.
    M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, P. Ferraro (2008) Super-resolution in digital holography by a two dimensional dynamic phase grating. Optics Express. 16:17107–17118CrossRefGoogle Scholar
  15. 15.
    M. Paturzo, P. Ferraro (2009) Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography. Opt. Lett. 24:3650–3652CrossRefGoogle Scholar
  16. 16.
    M. Paturzo, P. Ferraro (2009) “Creating an extended focus image of a tilted object in Fourier digital holography,” Opt. Express. 17:20546–20552CrossRefGoogle Scholar
  17. 17.
    M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, P. Ferraro (2010) Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths. Opt. Lett. 35:2112–2114CrossRefGoogle Scholar
  18. 18.
    A. Pelagotti, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, P. Ferraro “Reliability of 3D imaging by digital holography at long IR wavelength” IEEE/OSA Journal of Display Technology (in press).Google Scholar
  19. 19.
    D. Prévost, G. Thibault, P. Galarneau, M. Denariez-Roberge, A. Tarrats-Saugnac, F. de Contencin (1989) Thermal gratings written in glycerol with CO2 laser radiation. Appl. Opt. 28:3751–3753CrossRefGoogle Scholar
  20. 20.
    L. Repetto, R. Chittofrati, E. Piano, C. Pontiggia (2005) Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers. Opt. Comm. 251:44–50CrossRefGoogle Scholar
  21. 21.
    M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, D. Bélanger (1997) Plastic recording media for holography at 10.6 μm. Appl. Opt. 16:1876–1879CrossRefGoogle Scholar
  22. 22.
    M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu (1978) Use of the TEM10 laser mode for ir holography at 10.6 μm Appl. Opt. 17:3864CrossRefGoogle Scholar
  23. 23.
    G. I. Rukman, B. E. Lisyanskii, P. A. Morozov, S. P. Morozova, (1978) Holography in the IR region of the spectrum, based on scanning image converters. Meas. Techniques. 21:635–636CrossRefGoogle Scholar
  24. 24.
    T. Sakusabe, S. Kobayashi (1971) Infrared Holography with Liquid Crystals. Jpn. J. Appl. Phys. 10:758–761CrossRefGoogle Scholar
  25. 25.
    K. Shigeaki, K. Kyoko (1971) Infrared Holography with Wax and Gelatin Film. Appl. Phys. Lett. 19:482CrossRefGoogle Scholar
  26. 26.
    A. Stadelmaier, J. H. Massig (2000) Compensation of lens aberrations in digital holography. Opt. Lett. 25:1630–1632CrossRefGoogle Scholar

Copyright information

© 3D Display Research Center and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anna Pelagotti
    • 1
  • Melania Paturzo
    • 2
  • Andrea Geltrude
    • 1
  • Massimiliano Locatelli
    • 1
  • Riccardo Meucci
    • 1
  • Pasquale Poggi
    • 1
  • Pietro Ferraro
    • 2
  1. 1.CNR-INO (National Institute of Opticts)FlorenceItaly
  2. 2.CNR-INO (National Institute of Opticts)PozzuoliItaly

Personalised recommendations