3D Research

, 1:4 | Cite as

Using articulated scene models for dynamic 3d scene analysis in vista spaces

  • Niklas Beuter
  • Agnes Swadzba
  • Franz Kummert
  • Sven Wachsmuth
3DR Express


In this paper we describe an efficient but detailed new approach to analyze complex dynamic scenes directly in 3D. The arising information is important for mobile robots to solve tasks in the area of household robotics. In our work a mobile robot builds an articulated scene model by observing the environment in the visual field or rather in the so-called vista space. The articulated scene model consists of essential knowledge about the static background, about autonomously moving entities like humans or robots and finally, in contrast to existing approaches, information about articulated parts. These parts describe movable objects like chairs, doors or other tangible entities, which could be moved by an agent. The combination of the static scene, the self-moving entities and the movable objects in one articulated scene model enhances the calculation of each single part. The reconstruction process for parts of the static scene benefits from removal of the dynamic parts and in turn, the moving parts can be extracted more easily through the knowledge about the background. In our experiments we show, that the system delivers simultaneously an accurate static background model, moving persons and movable objects. This information of the articulated scene model enables a mobile robot to detect and keep track of interaction partners, to navigate safely through the environment and finally, to strengthen the interaction with the user through the knowledge about the 3D articulated objects and 3D scene analysis.


Vista space Articulated scene model Mobile robot Person tracking 3D background modeling 


  1. 1.
    P. Beeson, M. MacMahon, J. Modayil, A. Murarka, B. Kuipers, B. Stankiewicz (2007) Integrating multiple representations of spatial knowledge for mapping, navigation, and communication. In Proceedings of the Symposium on Interaction Challenges for Intelligent Assistants, AAAI Spring Symposium Series. Stanford, CA. AAAI Technical Report SS-07-04.Google Scholar
  2. 2.
    M. Berthold, D. J. Hand (2003) Intelligent Data Analysis, 2nd edn. Springer.Google Scholar
  3. 3.
    M.D. Breitenstein, E. Sommerlade, B. Leibe, L. van Gooland I. Reid (2008) Probabilistic parameter selection for learning scene structure from video. In Proceedings of the British Machine Vision Conference.Google Scholar
  4. 4.
    G. Brostow, I. Essa (1999) Motion based decompositing of video. IEEE. 1:8–13.Google Scholar
  5. 5.
    A. Buades, B. Coll, J. M. Morel (2005) A non-local algorithm for image denoising, In Intl. Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
  6. 6.
    H. Buxton (2003) Learning and understanding dynamic scene activity, A review. Image and Vision Computing. 21:125–136.CrossRefGoogle Scholar
  7. 7.
    COGNIRON (2004) The cognitive robot companion, (FP6-IST-002020).
  8. 8.
    N. Dalal, B. Triggs (2005) Histograms of Oriented Gradients for Human Detection. In CVPR. 886–893.Google Scholar
  9. 9.
    H. M, Dee, R. Fraile, D. C. Hogg, A. G. Cohn (2008) Modelling scenes using the activity within them. In Proceedings of the International Conference on Spatial Cognition VI. 394–408. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  10. 10.
    A. Ess, B. Leibe, K. Schindler, L. van Gool (2009) Robust multiperson tracking from a mobile platform, IEEE Trans. Pattern Anal. Mach. Intell. 31(10):1831–1846CrossRefGoogle Scholar
  11. 11.
    J. Gibson (1950) The perception of the visual world. Riverside Press.Google Scholar
  12. 12.
    L. Guan, J. Franco, M. Pollefeys (2007) 3d occlusion inference from silhouette cues, In, Computer Vision and Pattern Recognition, CVPR. Ieee, Minneapolis, MN.Google Scholar
  13. 13.
    L. Guan, M. Pollefeys (2008) A unified approach to calibrate a network of camcorders and tof cameras, 1–12Google Scholar
  14. 14.
    E. Hayman, J. O. Eklundh (2003) Statistical background subtraction for a mobile observer, In, Proceedings of the International Conference on Computer Vision. 67–74.Google Scholar
  15. 15.
    B. K. Horn, B. G. Schunck (1981) Determining optical flow, In, Artificial Intelligence. 17:185–204.CrossRefGoogle Scholar
  16. 16.
    B. K. P. Horn, H. Hilden, S. Negahdaripour (1988) Closed-form solution of absolute orientation using orthonormal matrices, Journal of the optical society America. 5(7):1127–1135.MathSciNetCrossRefGoogle Scholar
  17. 17.
    B. Huhle, P. Jenke, W. Straer (2007) On-the-fly scene acquisition with a handy multisensor-system, In, Workshop on Dynamic 3D Imaging (Dyn3D).Google Scholar
  18. 18.
    B. Huhle, T. Schairer, P. Jenke, W. Straer (2008) Robust non-local denoising of colored depth data, In, Intl. Conference on Computer Vision and Pattern Recognition (CVPR), Workshop on Time of Flight Camera based Computer Vision (TOF-CV).Google Scholar
  19. 19.
    K. Kim, T. H Chalidabhongse, D. Harwood, L. Davis (2005) Real-time foreground-background segmentation using codebook model, Real-Time Imaging. 11:172–185.CrossRefGoogle Scholar
  20. 20.
    J. Klappstein, T. Vaudrey, C. Rabe, A. Wedel, R. Klette (2009) Moving object segmentation using optical flow and depth information, In, Proceedings of the Symposium on Advances in Image and Video Technology. 611–623.Google Scholar
  21. 21.
    K. Koile, K. Tollmar, D. Demirdjian, H. Shrobe, T. Darrell (2003) Activity zones for context-aware computing, In, Proceedings of the International Conference on Ubiquitos Computing, Lecture Notes in Computer Science. 2864:90–106.CrossRefGoogle Scholar
  22. 22.
    B. Kuipers (1999) The spatial semantic hierarchy. Artificial Intelligence, 119:191–233.MathSciNetCrossRefGoogle Scholar
  23. 23.
    B. D. Lucas, T. Kanade (1981) An iterative image registration technique with an application to stereo vision, In, Proceedings of the International Joint Conference on Artificial Intelligence. 674–679.Google Scholar
  24. 24.
    D. Makris, T. Ellis (2003) Automatic learning of an activity-based semantic scene model, In, Proceedings of the Conference on Advanced Video and Signal Based Surveillance.Google Scholar
  25. 25.
    S. May, B. Werner, H. Surmann, K. Pervolz (2006) 3D Time-of-Flight cameras for mobile robotics, In, Intl. Conference on Intelligent Robots and Systems (IROS). 790–795.Google Scholar
  26. 26.
    A. Mittal, A. Monnet, N. Paragios (2009) Scene modeling and change detection in dynamic scenes: A subspace approach, Computer Vision and Image Understanding. 113(1):63–79.CrossRefGoogle Scholar
  27. 27.
    D.R. Montello (1993) Scale and multiple psychologies of space, In, Lecture Notes in Computer Science: Spatial Information Theory A Theoretical Basis for GIS. 716:312–321.Google Scholar
  28. 28.
    S. Oprisescu, D. Falie, M. Ciuc, V. Buzuloiu (2007) Measurements with tof cameras and their necessary corrections, In, Intl. Symposium on Signals, Circuits & Systems (ISSCS).Google Scholar
  29. 29.
    P. Peursum, S. Venkatesh, G. West, H. H. Bui (2004) Using interaction signatures to find and label chairs and floors. Pervasive Computing 3(4):58–65.CrossRefGoogle Scholar
  30. 30.
    S. Rusinkiewicz, M. Levoy (2001) Efficient variants of the icp algorithm, In, INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING.Google Scholar
  31. 31.
    B. C. S. Sanders, T. C. elson, R. Sukthankar (2002) A theory of the quasi-static world, In, Proceedings of the International Conference on Pattern Recognition. 3:1–6Google Scholar
  32. 32.
    I. Schiller, C. Beder, R. Koch (2008) Calibration of a pmd camera using a planar calibration object together with a multi-camera setup, In, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 37Part B3a:297–302.Google Scholar
  33. 33.
    J. Schmidt, C. Wöhler, L. Krüger, T. Gövert, C. Hermes (2007) 3D scene segmentation and object tracking in multiocular image sequences, In, Proceedings of the International Conference on Computer Vision Systems.Google Scholar
  34. 34.
    J. Schmüdderich, V. Willert, J. Eggert, S. Rebhan, C. Goerick, G. Sagerer, E. Körner (2008) Estimating object proper motion using optical flow, kinematics, and depth information, IEEE Trans Syst Man Cybern B Cybern. 38:1139–1151.CrossRefGoogle Scholar
  35. 35.
    Y. Sheikh, M. Shah (2005) Bayesian modeling of dynamic scenes for object detection, Transactions on Pattern Analysis and Machine Intelligence. 27(11):1778–1792.CrossRefGoogle Scholar
  36. 36.
    C. Stauffer, W. E. L. Grimson, (1999) Adaptive background mixture models for real-time tracking, In, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 246–252.Google Scholar
  37. 37.
    J. Sturm, K. Konelige, C. Stachniss, W. Burgard (2010) Vision-based detection for learning articulation models of cabinet doors and drawers in household environments, In, Proceedings of the International Conference on Robotics and Automation.Google Scholar
  38. 38.
    J. Sturm, V. Predeep, C. Stachniss, C. Plagemann, K. Konolige, W. Burgard (2009) Learning kinematic models for articulated objects, In, Proceedings of the International Joint Conference on Artificial Intelligence. 1851–1856.Google Scholar
  39. 39.
    Swadzba, A., Beuter, N., Schmidt, J., Sagerer, G.: Tracking objects in 6d for reconstructing static scenes. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2008).Google Scholar
  40. 40.
    A. Swadzba, B. Liu, J. Penne, O. Jesorsky, R. Kompe (2007) A comprehensive system for 3D modeling from range images acquired from a 3d tof sensor, In, Proceedings of the International Conference on Computer Vision Systems.Google Scholar
  41. 41.
    A. Swadzba, S. Wachsmuth (2008) Categorizing perceptions of indoor rooms using 3D features, In, Lecture Notes in Computer Science: Structural, Syntactic, and Statistical Pattern Recognition. 5342:744–754 (2008).Google Scholar
  42. 42.
    A. Swadzba, N. Beuter, S. Wachsmuth, F. Kummert (2010) Dynamic 3D Scene Analysis for Acquiring Articulated Scene Models, In, Proceedings of the International Conference on Robotics and Automation.Google Scholar
  43. 43.
    X. Wang, K. Tieu, E. Grimson (2006) Learning semantic scene models by trajectory analysis, In, Proceedings of the European Conference on Computer Vision, lncs. 3953:110–123.Google Scholar
  44. 44.
    J. Weingarten, G. Gruener, R. Siegwart (2004) A stateof-the-art 3D sensor for robot navigation, In, Proceedings of the International Conference on Intelligent Robots and Systems. 3:2155–2160.Google Scholar
  45. 45.
    F. Yuan, A. Swadzba, R. Philippsen, O. Engin, M. Hanheide, S. Wachsmuth (2009) Laser-based navigation enhanced with 3D time-of-flight data, In, Proceedings of the International Conference on Robotics and Automation. 2844–2850.Google Scholar

Copyright information

© 3D Display Research Center and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Niklas Beuter
    • 1
  • Agnes Swadzba
    • 1
  • Franz Kummert
    • 1
  • Sven Wachsmuth
    • 1
  1. 1.Bielefeld UniversityBielefeldGermany

Personalised recommendations