3D Research

, 3:5 | Cite as

Color asymmetry in 3D imaging: Influence on the viewing experience

  • Monika Pölönen
  • Jussi Hakala
  • Radu Bilcu
  • Toni Järvenpää
  • Jukka Häkkinen
  • Marja Salmimaa
3DR Express

Abstract

Because the chain of events in 3D imaging is vulnerable to different context- and technology-specific variables, it is important to understand the extent to which users can accept feature-specific differences between scenes without a decrease in the (observed) image quality. Twenty participants were asked to view natural stereoscopic still images and evaluate how different combinations of color asymmetries affect the overall viewing experience, the naturalness of the image and the depth perception. As expected, an increase in color asymmetry between the viewer's left-eye and right-eye images decreased the image quality evaluation scores. Certain color-channel-specific changes, such as a decrease in blue values, were more acceptable than others, and some content-specific features, such as a brownish or greenish background, were less sensitive to changes compared to close-up images with brighter objects and backgrounds.

Keywords

color asymmetry stereoscopic content viewing experience naturalness depth perception 

References

  1. 1.
    Saladin J (2005) Stereopsis from a performance perspective, Optometry & Vision Science, 82: 186–205.CrossRefGoogle Scholar
  2. 2.
    Howard IP, Rogers BJ (1995) Binocular vision and stereopsis, Oxford University Press, New York.Google Scholar
  3. 3.
    Self H. (1986) Optical tolerances for alignment and image differences for binocular helmet-mounted displays. Technical Report AAMRL-TR-86-019, Harry G. Armstrong Aerospace Medical Research Lab, Wright-Patterson AFB, USA.Google Scholar
  4. 4.
    Kooi F, Toet A (2004) Visual comfort of binocular and 3D displays, Displays 25:99–108.CrossRefGoogle Scholar
  5. 5.
    Järvenpää T, Pölönen M (2010) Optical characterization and ergonomical factors of near-to-eye displays, Journal of the Society for Information Display, 18: 285–292.CrossRefGoogle Scholar
  6. 6.
    Melzer J, Moffitt K (Eds.) (1997) Head Mounted Displays, Designing for the User, McGraw Hill Publishing, New York.Google Scholar
  7. 7.
    Ilie A, Welch G (2005) Ensuring color consistency across multiple cameras, Proceeding of ICCV 2:1268–1275.Google Scholar
  8. 8.
    Aflaki P, Hannuksela MM, Hakala J, Häkkinen J, Gabbouj M (2011) Joint adaptation of spatial resolution and sample value quantization for asymmetric stereoscopic video compression: a subjective study, Proc. International Symposium on Image and Signal Processing and Analysis (ISPA) Google Scholar
  9. 9.
    Bulbul A, Cipiloglu Z, Capin T (2010) A perceptual approach for stereoscopic rendering optimization. Computers Graphics 34: 145–157.CrossRefGoogle Scholar
  10. 10.
    Foster D (2011) Color constancy. Vision Research, 51: 674–700.CrossRefGoogle Scholar
  11. 11.
    Yang J, Maloney LT (2001) Illuminant cues in surface color perception: tests of three candidate cues. Vision Research 41: 2581–2600.CrossRefGoogle Scholar
  12. 12.
    Landy MS, Maloney LT, Johnston EB, Young M (1995) Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Research, 35(3): 389–412.CrossRefGoogle Scholar
  13. 13.
    Pridmore RW (2007) Effects of luminance, wavelength and purity on the color attributes: Brief review with new data and perspectives, Color Research & Application 32: 208–222.CrossRefGoogle Scholar
  14. 14.
    Barbur J, Spang K (2008) Colour constancy and conscious perception of changes of illuminant, Neuropsychologia 46: 853–863.CrossRefGoogle Scholar
  15. 15.
    Land EH (1986) Recent advances in retinex theory, Vision Research 26:7–21.CrossRefGoogle Scholar
  16. 16.
    Kamermans M, Kraau DA, Spekreijse H (1998) The cone/horizontal cell network: A possible site for colour constancy, Visual Neuroscience 15:787–797.CrossRefGoogle Scholar
  17. 17.
    Sharma G, Trussell HJ (1997) Digital color imaging, IEEE Transactions on Image Processing 6: 901–932.CrossRefGoogle Scholar
  18. 18.
    Maloney LT, Landy MS (1989) A statistical framework for robust fusion of depth information, Visual Communications and Image Processing IV 1199:1154–1163.Google Scholar
  19. 19.
    Arend L (2001) Environmental challenges to color constancy. In B. E. Rogowitz & T.N. Pappas (Eds.), Human vision and electronic imaging VI 4299:392–399.Google Scholar
  20. 20.
    Yang JN, Shevell SK (2002) Stereo disparity improves color constancy, Vision Research 42: 1979–1989.CrossRefGoogle Scholar
  21. 21.
    Den Ouden HEM, Van Ee R, De Haan EHF (2005) Colour helps to solve the binocular matching problem, The Journal of Physiology 567: 665–671.CrossRefGoogle Scholar
  22. 22.
    Simmons DR, Kingdom FAA (2002) Interactions between chromatic- and luminance-contrast-sensitive stereopsis mechanisms, Vision Research 42: 1535–1545.CrossRefGoogle Scholar
  23. 23.
    Simmons DR, Kingdom FAA (1997) On the independence of chromatic and achromatic stereopsis mechanisms, Vision Research 37:1271–1280.CrossRefGoogle Scholar
  24. 24.
    Kim M, Weyrich T, Kautz J (2009) Modeling Human Color Perception under Extended Luminance Levels, ACM Trans. Graph., 28: 27:1–27:9.Google Scholar
  25. 25.
    Pridmore RW (2011) Complementary colors theory of color vision: physiology, color mixture, color constancy and color. Perception, 36:394–412.Google Scholar
  26. 26.
    Stone MC (2005) Representing colors as three numbers [color graphics], Computer Graphics and Applications 25: 78–85.CrossRefGoogle Scholar
  27. 27.
    Trémeau A, Tominaga S, Plataniotis KN (2008) Color in image and video processing: most recent trends and future research directions, J. Image Video Process, 2008: 581371.Google Scholar
  28. 28.
    Ling Y, Hurlbert AC (2005) Color constancy is as good as memory allows a new color constancy index, ECVP abstract.Google Scholar
  29. 29.
    Siple P, Springer RM (1983) Memory and preference for the colors of objects, Percept Psychology 34:363–370.CrossRefGoogle Scholar
  30. 30.
    Bramão I, Reis A, Petersson KM, Faísca L (2011) The role of color information on object recognition: A review and metaanalysis, Acta Psychologica 138: 244–253.Google Scholar
  31. 31.
    Yendrikhovskij SN, Blommaert FJJ, de Ridder H (1999) Color reproduction and the naturalness constraint, Color Research & Application 24: 52–67.CrossRefGoogle Scholar
  32. 32.
    Yendrikhovskij SN, Blommaert FJJ, de Ridder H (1999) b, Representation of memory prototype for an object color. Color Research & Application 24: 393–410.CrossRefGoogle Scholar
  33. 33.
    Uttl B, Graf P, Santacruz P (2006), Object color affects identification and repetition priming, Scandinavian Journal of Psychology 47: 313–325.CrossRefGoogle Scholar
  34. 34.
    Guibal CC, Dresp B (2004) Interaction of color and geometric cues in depth perception: When does “red” mean “near”?, Psychological Research 69: 30–40.CrossRefGoogle Scholar
  35. 35.
    Engeldrum PG (2004) A theory of image quality: the image quality circle, J. Imaging Sci. Technol. 48: 447–457.Google Scholar
  36. 36.
    Engeldrum PG (2004) A short image quality model taxonomy, J. Imaging Sci. Technol 48: 160–165.Google Scholar
  37. 37.
    Iehl JC, Péroche B (2003) Towards perceptual control of physically based spectral rendering, Computers & Graphics 27: 747–762.CrossRefGoogle Scholar
  38. 38.
    Ridder J, Blommaert F, Fedorovskaya E (1995) Naturalness and image quality: Chroma and hue variations in color images of natural scenes, Proc. SPIE 2411: 51–56.CrossRefGoogle Scholar
  39. 39.
    Ridder H (1996) Naturalness and image quality: Saturation and lightness variation in color images, J. Imaging Sci. Technol 40: 487–493.Google Scholar
  40. 40.
    Kuijsters A, Ijsselsteijn WA, Lambooij MTM, Heynderickx IEJ (2009) Influence of chroma variations on naturalness and image quality of stereoscopic images, Proc. SPIE 7240: 72401E.CrossRefGoogle Scholar
  41. 41.
    Kim DC, Kim KM, Kyung WJ, Ha JH (2011) Skin tone reproduction based on multiple preferred skin colors. IEEE International Conference on Consumer Electronics 108–111.Google Scholar
  42. 42.
    Bodrogi P, Tarczali T (2001) Colour memory for various sky, skin, and plant colours: Effect of the image context, Color Research & Application 26: 278–289.CrossRefGoogle Scholar
  43. 43.
    Guan SS, Hung PS (2010) Influences of psychological factors on image color preferences evaluation, Color Research & Application Color Res 35: 213–232.CrossRefGoogle Scholar
  44. 44.
    Lambooij M, IJsselsteijn W, Bouwhuis DG, Heynderickx I (2011) Evaluation of Stereoscopic Images: Beyond 2D Quality, IEEE Transactions on Broadcasting 57: 432–444.CrossRefGoogle Scholar
  45. 45.
    Pölönen M, Salmimaa M, Häkkinen J (2011) Effect of ambient illumination level on perceived autostereoscopic display quality and depth perception, Displays 32:135–141.CrossRefGoogle Scholar
  46. 46.
    Seuntiëns P J H, Heynderickx I, IJsselsteijn WA (2008) Capturing the added value of 3D-TV: Viewing experience and naturalness of stereoscopic images, J. Imaging Sci. Technol., 52: 020504:1–020504:5.CrossRefGoogle Scholar
  47. 47.
    Seuntiëns PJH, Meesters LMJ, IJsselsteijn WA (2005) Perceptual attributes of crosstalk in 3D images, Displays, 26:177–183.CrossRefGoogle Scholar
  48. 48.
    Forsyth DA (1990) A Novel Algorithm for Color Constancy, Int'l J. Computer Vision 5: 5–36.CrossRefGoogle Scholar
  49. 49.
    Gijsenij A, Gevers T (2011) Color Constancy Using Natural Image Statistics and Scene Semantics, IEEE Transactions on Pattern Analysis and Machine Intelligence 33: 687–698.CrossRefGoogle Scholar
  50. 50.
    Siddiqui H, Bouman CA (2008) Hierarchical Color Correction for Camera Cell Phone Images, IEEE Transactions on Image Processing 17: 2138–2155.MathSciNetCrossRefGoogle Scholar
  51. 51.
    Jordan JR, Bovik AC (1988) Computational stereo vision using color, Control Systems Magazine 8: 31–36.CrossRefGoogle Scholar
  52. 52.
    Hwang J, Kim JW, Choi BH, Lee W (2011) Color correction without color patterns for stereoscopic camera systems. 11th International Conference on Control, Automation and Systems (ICCAS) 1129–1134.Google Scholar
  53. 53.
    Alais D (2012) Binocular rivalry: competition and inhibition in visual perception, Wiley Interdisciplinary Reviews: Cognitive Science 3: 87–103.CrossRefGoogle Scholar
  54. 54.
    Blake R, Logothetis NK (2002) Visual competition, Nature Reviews Neuroscience 2002: 13–21.CrossRefGoogle Scholar
  55. 55.
    Tsirlin I, Wilcox LM, Allison RS (2011) The Effect of Crosstalk on the Perceived Depth From Disparity and Monocular Occlusions, IEEE Transactions on Broadcasting, 57: 445–453.CrossRefGoogle Scholar
  56. 56.
    I3A International Imaging Industry Association (2007) The Camera Phone Image Quality (CPIQ) Initiative White Paper- Fundamentals and review of considered test methods, I3A International Imaging Industry Association.Google Scholar
  57. 57.
    Donofrio RL (2011) Review Paper: The Helmholtz- Kohlrausch effect, Journal of the Society for Information Display, 19: 658–664.CrossRefGoogle Scholar
  58. 58.
    Luo M, Cui G (2001) The development of the CIE 2000 colour difference formula: CIEDE2000, Color Research & Application 26:340–350CrossRefGoogle Scholar
  59. 59.
    Spence I, Wong P, Rusan M, Rastegar N (2006) How Color Enhances Visual Memory for Natural Scenes. Psychological Science 17: 1–6.CrossRefGoogle Scholar
  60. 60.
    Sharma G, Wu W. Dalal EN (2005) The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations, Color Research & Application 30: 21–30.CrossRefGoogle Scholar

Copyright information

© 3D Display Research Center and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Monika Pölönen
    • 1
  • Jussi Hakala
    • 1
  • Radu Bilcu
    • 1
  • Toni Järvenpää
    • 1
  • Jukka Häkkinen
    • 2
  • Marja Salmimaa
    • 2
    • 3
  1. 1.Media Technologies LaboratoryNokia Research CenterTampereFinland
  2. 2.Department of Media TechnologyAalto University, School of ScienceHelsinkiFinland
  3. 3.Institute of Behavioral SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations