3D Research

, 2:2

Partially coherent lensless holographic microscopy with micrometre resolution applied to extended objects

3DR Express


In this work, a blue light-emitting diode (LED) is used in lenseless Digital In-line Holography Microscopy (DIHM) to show that micrometre resolution can be reached even when millimetre range objects, such as the head of a fruit fly, are imaged with partially coherent spherical wavefronts. The influence of the spatial coherence on the resolution of the microscope is analysed by changing the diameter of pinhole from which the spherical wavefronts are originated. Even though the best achieved resolution with the use of the LED is less than the ultimate provided by the use of fully coherent laser sources, the former is very competitive as the ratio performance/cost is compared for both approaches. Micrometre-sized beads are used for quantitative testing of the lateral resolution.


partially coherent light digital in-line holographic microscopy resolution extended objects 


  1. 1.
    W. Hassad, D. Cullen, J. Solem, J. Longworth, A. McPherson, K. Boyer, C. Rhodes (1992) Fouriertransform holographic microscope, Appl. Opt. 31: 4973–4978.CrossRefGoogle Scholar
  2. 2.
    E. Cuche, P. Poscio, C. Depeursinge (1996) Optical tomography at the microscopic scale by means of a numerical low coherence holographic technique. in Optical and Imaging Techniques for Biomonitoring II, H. J. Foth, R. Marchesini, and H. Pobielska, eds., Proc. SPIE 2927:61–66.Google Scholar
  3. 3.
    E. Cuche, P. Poscio, C. Depeursinge (1997) Tomographie optique par une technique d’holographie numérique en faible coherence, J. Opt. Paris, 28: 260–264.Google Scholar
  4. 4.
    F. Dubois, L. Joannes, J. C. Legros (1999) Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source, Appl. Opt, 38:7085–7094.CrossRefGoogle Scholar
  5. 5.
    F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, O. Monnom (2006) Digital holographic microscopy with reduced spatial coherence for threedimensional particle flow analysis, Appl. Opt, 45:864–871.CrossRefGoogle Scholar
  6. 6.
    G. Pedrini and H. Tiziani (2002) Short-coherence digital microcopy by use of lensless holographic imaging system, Appl. Opt, 22:4489–4496.CrossRefGoogle Scholar
  7. 7.
    L. Martinez-Leon, G. Pedrini, W Osten (2005) Application of short-coherence digital holography in microscopy. Appl. Opt. 44: 3977–3984.CrossRefGoogle Scholar
  8. 8.
    W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer (2002) Digital in-line holography of microspheres, App. Opt, 41: 5367–5375.CrossRefGoogle Scholar
  9. 9.
    L. Repetto, E. Piano, C. Pontiggia (2004) Lensless digital holographic microscope with light-emitting diode illumination, Opt. Lett, 29:1132–1134.CrossRefGoogle Scholar
  10. 10.
    U. Gopinathan, G. Pedrini, W. Osten (2008) Coherence effects in digital in-line holographic microscopy, J. Opt. Soc. Am. A, 25:2459–2466.CrossRefGoogle Scholar
  11. 11.
    J. Garcia-Sucerquia, W. Xu, S.K. Jericho, P. Klages, M. H. Jericho, H. J. Kreuzer (2006-a) Digital in-line holographic microscopy, Appl. Opt, 45:836–850.CrossRefGoogle Scholar
  12. 12.
    J. Garcia-Sucerquia, W. Xu, M. H. Jericho, H. J. Kreuzer (2006-b) Immersion digital in-line holographic microscopy, Opt. Lett, 31:1211–1213.CrossRefGoogle Scholar
  13. 13.
    J. Garcia-Sucerquia, D. C. Alvarez-Palacio, M. H. Jericho, H. J. Kreuzer (2006-c) Comment on “Reconstruction algorithm for high-numerical aperture hologram with diffraction limited resolution”, Opt. Lett, 31:2845–2847.CrossRefGoogle Scholar
  14. 14.
    H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid (1992) Theory of the Point Source Electron Microscope, Ultramicroscopy, 45:381–403.CrossRefGoogle Scholar
  15. 15.
    W. Xu, M. H. Jericho, H. J. Kreuzer, I. A. Meinertzhagen (2003) Tracking particles in four dimensions with in-line holographic microscopy, Opt. Lett, 28:164–166.CrossRefGoogle Scholar
  16. 16.
    H. J. Kreuzer (2002) Holographic Microscope and Method of Hologram Reconstruction, US Patent 6,411,406 B1.Google Scholar
  17. 17.
    H. J. Kreuzer, P. Klages, DIHM-software (2006) “A software package for the reconstruction of digital inline and other holograms” (Helix Science Applications, Halifax, N.S., Canada).Google Scholar
  18. 18.
    M. Born and E. Wolf (1993) Principles of Optics, 6th ed., Pergamon Press, Oxford.Google Scholar
  19. 19.
    D. Gabor (1949) Microscopy by reconstructed wavefronts, Proc. Roy. Soc. London A, 197: 454–487.MATHCrossRefGoogle Scholar
  20. 20.
    D. Bodian (1936) A new method for staining nerve fibers and nerve endings in mounted paraffin sections, Anat. Rec, 65:89–97.CrossRefGoogle Scholar

Copyright information

© 3D Display Research Center and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of PhysicsUniversidad Nacional de ColombiaMedellínColombia

Personalised recommendations