3D Research

, 1:3 | Cite as

Modern Methods for fast generation of digital holograms

  • P. W. M. Tsang
  • J. P. Liu
  • K. W. K. Cheung
  • T. -C. Poon
3DR Review

Abstract

With the advancement of computers, digital holography (DH) has become an area of interest that has gained much popularity. Research findings derived from this technology enables holograms representing three dimensional (3-D) scenes to be acquired with optical means, or generated with numerical computation. In both cases, the holograms are in the form of numerical data that can be recorded, transmitted, and processed with digital techniques. On top of that, the availability of high capacity digital storage and wide-band communication technologies also cast light on the emergence of real time video holographic systems, enabling animated 3-D contents to be encoded as holographic data, and distributed via existing medium. At present, development in DH has reached a reasonable degree of maturity, but at the same time the heavy computation involved also imposes difficulty in practical applications. In this paper, a summary on a number of successful accomplishments that have been made recently in overcoming this problem is presented. Subsequently, we shall propose an economical framework that is suitable for real time generation and transmission of holographic video signals over existing distribution media. The proposed framework includes an aspect of extending the depth range of the object scene, which is important for the display of large-scale objects.

Keywords

Optical Scanning Holography Computer Generated Holography Graphic Processing Unit Field Programmable Gate Array Virtual Window Novel Look Up Table Run Length Coding Patch Model Sub-lines Multirate Filtering Depth Enhancement 

References

  1. 1.
    T.-C. Poon (2006) ed., Digital holography and three-dimensional display, Berlin: Springer.Google Scholar
  2. 2.
    M. Parker Givens (1967) Introduction to holography, Am. J. Phys. 35: 1056–1064CrossRefGoogle Scholar
  3. 3.
    T.-C. Poon (2008) On the fundamentals of optical scanning holography, American Journal of Physics. 76: 738–745CrossRefGoogle Scholar
  4. 4.
    T.-C. Poon et al (1996) Optical scanning holography, Proc. Of the IEEE. 84(5): 753–764MathSciNetCrossRefGoogle Scholar
  5. 5.
    T.-C. Poon (2007) Optical scanning holography with MATLAB, Springer. (ISBN: 978-0-387-36826-9)Google Scholar
  6. 6.
    T.-C. Poon (2002) Three-dimensional television using optical scanning holography, J. Info. Disp. 3: 12–16CrossRefGoogle Scholar
  7. 7.
    T.-C. Poon et al (2000) Twin-image elimination experiments for three-dimensional images in optical scanning holography, Opt. Lett. 25: 4CrossRefGoogle Scholar
  8. 8.
    T.-C. Poon (1997) Three-dimensional fluorescence microscopy by optical scanning holography. Opt. & Photon. News. 8: 22–23CrossRefGoogle Scholar
  9. 9.
    B. Schilling et al. (1997) Three-dimensional holographic fluorescence microscopy, Opt. Lett. 22: 1506–1508CrossRefGoogle Scholar
  10. 10.
    T.-C. Poon and T. Kim (1999) Optical image recognition of three-dimensional objects. Appl. Opt. 38: 370–381CrossRefGoogle Scholar
  11. 11.
    T. Kim, T.-C. Poon, M. Wu, K. Shinoda, and Y. Suzuki (1999) Three-dimensional image matching using two-Dimensional optical heterodyne scanning, Opt. Mem. Neural Net. 8: 139–145Google Scholar
  12. 12.
    12. T. Kim, T-C. Poon and G. Indebetouw (2002) Depth detection and image recovery in remote sensing by optical scanning holography, Opt. Eng. 41: 1331–1338CrossRefGoogle Scholar
  13. 13.
    B. R. Brown and A. W. Lohmann (1969) Computer-generated binary holograms, IBM J. of Res. and Dev. 13: 160–168CrossRefGoogle Scholar
  14. 14.
    T. Ito et al. (2005) Special-purpose computer HORN-5 for a real-time electroholography, Opt. Express. 13: 1923–1932CrossRefGoogle Scholar
  15. 15.
    L. Ahrenberg (2006) Computer generated holography using parallel commodity graphics hardware, Opt. Express. 14(17): 7636–7641CrossRefGoogle Scholar
  16. 16.
    H. Kang, F. Yaras, and L. Onural (2009) Graphics processing unit accelerated computation of digital holograms, Appl. Opt. 48(34)Google Scholar
  17. 17.
    Y. Seo, H. Cho, and D. Kim (OSA 2008) High-performance CGH processor for real-time digital holography, Laser App. Chem., Sec. and Env. Ana., OSA Tech. Digest. JMA9Google Scholar
  18. 18.
    T. Yamaguchi, G. Okabe, H. Yoshikawa (2007) Real-time image plane full-color and full-parallax holographic video display system, Opt. Eng. 46: 125801–126000CrossRefGoogle Scholar
  19. 19.
    19.H. Yoshikawa (2001) Fast computation of fresnel holograms employing difference, Opt. Rev. 8(5): 331–335MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. C. Kim and E. S. Kim (2008) Effective generation of digital holograms of three-dimensional objects using a novel look-up table method, Appl. Opt. 47: D55–D62CrossRefGoogle Scholar
  21. 21.
    S.-C. Kim, J.-H. Yoon, and E.-S. Kim (2008) Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques, Appl. Opt. 47: 5986–5995CrossRefGoogle Scholar
  22. 22.
    S. C. Kim and E. S. Kim (2009) Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods, Appl. Opt. 48: 1030–1041CrossRefGoogle Scholar
  23. 23.
    Y. Sakamoto and T. Nagao (2002) A fast computational method for computer-generated Fourier hologram using patch model. Electronics and Communications in Japan. 85(11): 16–24Google Scholar
  24. 24.
    K. Matsushima, H. Schimmel, and F. Wyrowski (2003) Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves, J. Opt. Ssoc. Amer. A20: 1755–1762CrossRefGoogle Scholar
  25. 25.
    25.K. Matsushima and S. Nakahara (2005) Computer generated holograms for three dimensional surface objects with shade and texture, Appl. Opt. 22: 4607–4614CrossRefGoogle Scholar
  26. 26.
    H. Sakata and Y. Sakamoto (2009) A fast computation method for Fresnel hologram using three-dimensional affine transformations in real space, Appl. Opt. Google Scholar
  27. 27.
    H. Yoshikawa (2006) Computer-Generated Holograms for white light reconstruction, Digital holography and threedimensional display: principles and applications, edited by T. — C. Poon, Springer Verlag. Google Scholar
  28. 28.
    T.-C. Poon et al. (2005) Horizontal-parallax-only electronic holography, Opt. Exp. 13(7): 2427–2432MathSciNetCrossRefGoogle Scholar
  29. 29.
    P. W. M. Tsang, J. P. Liu, K. W. K. Cheung, and T.-C. Poon (2009) Fast generation of Fresnel holograms based on multirate filtering, Appl. Opt. 48: H23–H30CrossRefGoogle Scholar
  30. 30.
    P. W. M. Tsang, J. P. Liu, T.-C. Poon, and K. W. K. Cheung (2009) Fast Generation of hologram sub-Lines based on field programmable gate array in Dig. Holo. and 3-D Img., OSA Tech. Dig. DWC2.Google Scholar
  31. 31.
    31.P. W. M. Tsang, J. P. Liu, K. W. K. Cheung, and T.-C. Poon (2009) An enhanced method for fast generation of hologram sub-lines, Chinese Opt. Lett. 7: 1092–1096CrossRefGoogle Scholar
  32. 32.
    P. W. M. Tsang, J. P. Liu, K. W. K. Cheung, and T.-C. Poon (2009) Fast generation of fresnel hologram based on graphic processing unit, Proc. Int’l. Conf. Comp. Comm. Syst. 59–62Google Scholar

Copyright information

© 3D Display Research Center and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • P. W. M. Tsang
    • 1
  • J. P. Liu
    • 2
  • K. W. K. Cheung
    • 1
  • T. -C. Poon
    • 3
  1. 1.Department of Electronic EngineeringCity University of Hong KongHong KongChina
  2. 2.Department of PhotonicsFeng Chia UniversityTaichungTaiwan
  3. 3.Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA

Personalised recommendations