3D Research

, 3:3 | Cite as

Effectiveness of stereoscopic displays in medicine: A review

  • M. H. P. H. van BeurdenEmail author
  • W. A. IJsselsteijn
  • J. F. Juola
3DR Review


In this paper we review empirical studies concerning the effectiveness of stereoscopic displays in medicine. The domains covered in this review are: diagnosis, pre-operative planning, minimally invasive surgery (MIS) and training/teaching. For diagnosis, stereoscopic viewing of medical data has been shown to improve the sensitivity of tumor detection in breast imaging, and to improve the visualization of internal structures in 3D ultrasound. For MRI and CT data, where images are frequently rendered in 3D perspective, the added value of binocular depth has not yet been convincingly demonstrated. For MIS, stereoscopic displays decrease surgery time and increase accuracy of surgical procedures when the resolution of the stereoscopic displays is comparable to that of 2D displays. Training and surgical planning already use computer simulations; more research however is needed to assess the potential benefits of stereoscopic displays in those applications. Overall, there is a clear need for more empirical evidence that quantifies the added value of stereoscopic displays in medical domains.


Stereoscopic Displays Performance Perception Diagnosis Medicine Pre-operative planning Minimally Invasive Surgery Training Teaching 


  1. 1.
    R. T. Held, T. T. Hui (2011) A guide to stereoscopic 3D displays in medicine. Academic Radiology. 8(8):1035–1048CrossRefGoogle Scholar
  2. 2.
    W. A. IJsselsteijn, P. J. H. Seuntiëns, L. M. J. Meesters (2005) Human factors of 3D displays. In: Schreer O, Kauff P, Sikora T, (eds.), 3D Videocommunication — Algorithms, concepts and real-time systems in human-centred communication. John Wiley & Sons, Ltd., 219–234Google Scholar
  3. 3.
    M. Lambooij, W. A. IJsselsteijn, M. Fortuin, I. Heynderickx (2009) Visual discomfort in stereoscopic displays: A review. Journal of Imaging Science and Technology. 53(3):1–14CrossRefGoogle Scholar
  4. 4.
    R. Patterson (2009) Human Factors of stereo displays: An update. Journal of society for Information Display. 17(12):987–996CrossRefGoogle Scholar
  5. 5.
    I. P. Howard, B. J. Rogers (2002) Seeing in Depth: Depth Perception Vol 1. Porteous Publishing, Toronto.Google Scholar
  6. 6.
    N. S. Holliman, N. A. Dodgson, G. E. Favalora, L. Pockett (2011) Three-dimensional displays: A review and application analysis. IEEE Transactions on Broadcasting. 57(2):362–371CrossRefGoogle Scholar
  7. 7.
    T. Okoshi (1980) Three dimensional displays. Proceedings of the IEEE. 68:548–564CrossRefGoogle Scholar
  8. 8.
    S. Pastoor (1997) 3-D displays: A review of current technologies, Displays. 17(2): 100–110CrossRefGoogle Scholar
  9. 9.
    H. Urey, K.V. Chelleppan, E. Erden, P. Surman (2011) State of the Art in Stereoscopic and Autostereoscopic Displays. Proceedings of the IEEE. 99(4):540–555CrossRefGoogle Scholar
  10. 10.
    M. H. P. H. van Beurden, A. Kuijsters, W. A. IJsselsteijn (2010) Performance of a path tracing task using stereo and motion based depth cues, Quality of Multimedia Experience (QoMEX), 2010 Second International Workshop. 176–181Google Scholar
  11. 11.
    J. Cutting, P. Vishton (1995) Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In: Epstein W and Rogers S (ed) Perception of Space and Motion, Academic Press, San Diego, CA: 69–117Google Scholar
  12. 12.
    B. Rogers, M. Graham (1982) Similarities between motion parallax and stereopsis in human depth perception. Vision Research. 22(2):261–270CrossRefGoogle Scholar
  13. 13.
    M. Hershenson (1999) Visual Space Perception. The MIT Press, Cambridge.Google Scholar
  14. 14.
    H. A. Sedgwick (2001) Visual space perception. Blackwell Handbook of Perception, Blackwell Publishers Ltd., Oxford, 128–167Google Scholar
  15. 15.
    W.A. IJsselsteijn, H. de Ridder, R. Hamberg, D. Bouwhuis, J. Freeman (1998) Perceived depth and the feeling of presence in 3DTV. Displays. 18(4):207–214CrossRefGoogle Scholar
  16. 16.
    P. Seuntiëns, I. Heynderickx, W. A. IJsselsteijn (2008) Capturing the added value of 3D-TV: Viewing experience and naturalness of stereoscopic images. Journal of Imaging Science and Technology. 52(2):1–5CrossRefGoogle Scholar
  17. 17.
    J. O. Merritt (1991) Evaluation of stereoscopic display benefits. In: Introduction to Stereoscopic Displays and Applications, Short Course Notes, Hodges L, McAllister D, Merritt J, (ed), SPIE The International Society for Optical Engineering, Washington.Google Scholar
  18. 18.
    N. Holliman (2005) 3D display systems. Technical Report, Department of Computer Science, Univ. Durham.Google Scholar
  19. 19.
    S. Pastoor (2006) Human factors of 3D displays in advanced image communications. Displays. 14:150–157CrossRefGoogle Scholar
  20. 20.
    B. S. Kuszyk, D. G. Heath, D. F. Bliss, E. K. Fishman (1996) Skeletal 3-D CT: Advantages of volume rendering over surface rendering. Skeletal Radiology. 25(3):207–214CrossRefGoogle Scholar
  21. 21.
    J. Faubert (2001) Motion parallax, stereoscopy, and the perception of depth: practical and theoretical issues. Bahram J (Ed), Proceedings of SPIE CR76:168–191Google Scholar
  22. 22.
    R. L. Sollenberger, P. Milgram (1993) Effects of stereoscopic and rotational displays in a three-dimensional path-tracing task. Human Factors. 35(3):483–499Google Scholar
  23. 23.
    C. Ware, P. Mitchell (2005) Reevaluating stereo and motion cues for visualizing graphs in three dimensions. Proceedings of the 2nd symposium on Applied perception in graphics and visualization:51–58Google Scholar
  24. 24.
    M. H. P. H. van Beurden, W. A. IJsselsteijn, Y. A. W. Kort de (2011) Evaluating stereoscopic displays: Both efficiency measures and perceived workload sensitive to manipulations in binocular disparity. Proceeding of SPIE-IS&T Electronic imaging. 7863:786316 1–786316 7Google Scholar
  25. 25.
    D. R. Melmoth, S. Grant (2006) Advantages of binocular vision for control of reaching and grasping. Experimental Brain Research. 171(3):371–388CrossRefGoogle Scholar
  26. 26.
    P. Servos, M. A. Goodale, L. S. Jakobson (1992) The role of binocular vision in prehension: A kinematic analysis. Vision Research. 32(8):1513–1521CrossRefGoogle Scholar
  27. 27.
    S. McWhorter, L. Hodges, W. Roderiguez (1991) Evaluation of display parameters affecting user performance of an interactive task in a virtual environment. Rep. No. GIT-GVU-91-31, Graphics, Visualization & Usability Center, Georgia Institute of Technology, Atlanta.Google Scholar
  28. 28.
    D.C. Smith, R.E. Cole, J.O. Merritt, R.L. Pepper (1979) Remote operator performance comparing mono and stereo TV displays: The effects of visibility, learning and task factors. Technical report Naval Ocean Systems Center. San Diego.Google Scholar
  29. 29.
    B. G. Blundell, A. J. Schwarz (2006) Creative 3-D displays and Interaction Interfaces. Wiley-Interscience, New Jersey.Google Scholar
  30. 30.
    J. T. Case (1912) The Importance of Stereoradiography, especially of the Alimentary Tract, with Demonstration of Plates. Proceedings of the Royal Society of Medicine. 5:73–86Google Scholar
  31. 31.
    J. M. Davidson (1918) Stereoscopic Radiography. Proceedings of the Royal Society of Medicine, 12:1–8Google Scholar
  32. 32.
    A. B. Johnson (1901) Stereoscopic radiography. Annals of Surgery. 35:455–466Google Scholar
  33. 33.
    J. K. Udupa, G. T. Herman (2000) 3D imaging in medicine, CRC Press LLC, Boca RatonGoogle Scholar
  34. 34.
    Zonneveld FW, Fukuta K (1994) A decade of clinical three-dimensional imaging: a review. Part II: Clinical applications. Investigative Radiology 29(5):574–589.CrossRefGoogle Scholar
  35. 35.
    F. W. Zonneveld (1994) A decade of clinical three-dimensional imaging: a review. Part III. Image analysis and interaction, display options, and physical models. Investigative Radiology. 29(5):716–725CrossRefGoogle Scholar
  36. 36.
    M. Tory, M. S. Akins, A. E. Kirkpatrick, M. Nicolaou, G. Z. Yang (2005) Eyegaze analysis of displays with combined 2D and 3D views. IEEE Visualization. 2005:519–526Google Scholar
  37. 37.
    M. S. Atkins, A. Moise, R. Rohling (2006) An application of eye-gaze tracking for designing radiologists workstation: Insights for comparative visual search task. ACM Transaction on Applied Perception. 3(2):136–151CrossRefGoogle Scholar
  38. 38.
    A. E. Krupinski (2010) Perceptual factors in reading medical images. In Samei, E, and Krupinski E (ed) The handbook of medical image perception and techniques. Cambridge: Cambridge University Press, 81–90Google Scholar
  39. 39.
    M. F. Verde, N. A. Macmillan, C. M. Rotello (2006) Measures of sensitivity based on a single hit rate and false alarm rate: The accuracy, precision, and robustness of d', Az, and A'. Perception and Psychophysics. 68(4):643–654CrossRefGoogle Scholar
  40. 40.
    H. L. Kundel (1990) Visual cues in the interpretation of medical imaging. Journal of Clinical Neurophysiology. 7(4):472–483CrossRefGoogle Scholar
  41. 41.
    R. Kickuth, G. Hartung, U. Laufer, C. Gruening, C. Stueckle, D. Liermann (2002) Stereoscopic 3D CT vs. standard 3D CT in the classification of acetabular fractures: An experimental study. British Journal of Radiology. 75(893): 422–427Google Scholar
  42. 42.
    A. E. Rosenbaum, W. Huda, K. A. Lieberman, R. D. Caruso (2000) Binocular three-dimensional perception through stereoscopic generation from rotating images. Academic Radiology. 7(1):21–26CrossRefGoogle Scholar
  43. 43.
    M. A. Kersten, A. J. Stewart, N. Troje, R. Ellis (2006) Enhancing depth perception in translucent volumes. IEEE Transactions on Visualization and Computer Graphics. 12:1117–1123CrossRefGoogle Scholar
  44. 44.
    X. H. Wang, J. E. Durick, D. L. Herbert, S. K. Lu A Golla, D. D. Shinde, S. Piracha, K. Foley, C. R. Fuhrman, B. E. Shindel, J. K. Leader, W. F. Good (2010) Compare display schemes for lung nodule CT screening. Journal of Digital imaging. 24(3):478–484CrossRefGoogle Scholar
  45. 45.
    C. A. Mistretta (1993) Relative characteristics of MR angiography and competing vascular imaging modalities Journal of Magnetic Resonance Imaging. 3(5):685–698CrossRefGoogle Scholar
  46. 46.
    K. Doi, E. E. Duda (1983) Detectability of depth information by use of magnification stereoscopic technique in cerebral angiography. Radiology. 146:91–95Google Scholar
  47. 47.
    T. H. Moll, F. Turjman, C. Picard, J. P. Bres, M. Amiel (1997) Depth separation in ten observers with a new stereoscopic X-ray acquisition system. European Radiology 7(8):1343–1347CrossRefGoogle Scholar
  48. 48.
    M. Takahashi, H. Bussaka, M. Miyawaki (1986) Stereoscopic DSA of the central nervous system. Neuroradiology. 28(2):105–108CrossRefGoogle Scholar
  49. 49.
    K. U. Wentz, H. P. Mattle, R. R. Edelman, J. Kleefield, G. V. O’Reilly, C. Liu (1991) Stereoscopic display of MR angiograms. Neuroradiology. 33(2):123–125CrossRefGoogle Scholar
  50. 50.
    A. Abildgaard, A. K. Witwit, J. S. Karlsen, E. A. Jacopsen, B. Tennoe, G. Ringstad, P. Due-Tonnessen (2010) An autostereoscopic 3D display can improve visualization of 3D models from intracranial MR angiography. International Journal of computer Assisted Radiology and Surgery. 5:549–554CrossRefGoogle Scholar
  51. 51.
    A. Hernandez, O. Basset, A. Bremond, I.E. Magnin (1998) Stereoscopic visualization of three-dimensional ultrasonic data applied to breast tumours. European Journal of Ultrasound 8(1):51–65CrossRefGoogle Scholar
  52. 52.
    T. R. Nelson, E. K. Ji, J. H. Lee, M. J. Bailey, D. H. Pretorius (2008) Stereoscopic evaluation of fetal bony structures. Journal of Ultrasound in Medicine. 27(1):15–24Google Scholar
  53. 53.
    A. H. J. Koning (2011) How 3D immersive visualization is changing medical diagnostics. Proceedings of SPIE-IS&T Electronic imaging. 7865:786503 1–786503 7Google Scholar
  54. 54.
    G. Bol Raap, A. H. J. Koning, T. V. Scohy, A. D. Ten Harkel, F. J. Meijboom, A. P. Kappetein, P. J. Spek van der, A. J. J. C. Bogers (2007) Virtual reality 3D echocardiography in the assessment of tricuspid valve function aftersurgical closure of ventricular septum defect. Cardiovascular Ultrasound. 5(8)Google Scholar
  55. 55.
    C. M. Verwoerd-Dikkeboom, A. H. J. Koning, P. J. Spek van der, N. Exalto, E. A. P. Steegers (2008) Embryonic staging using a 3D virtual reality system. Human Reproduction. 23(7):1479–1484CrossRefGoogle Scholar
  56. 56.
    A. N. Cherniy, B. M. Kanter, E. V. Serova, G. V. Ratobylski (2007) Use of stereoscopic vision for analysis of digital X-ray images of lungs. Biomedical Engineering. 41(5):214–217CrossRefGoogle Scholar
  57. 57.
    D. J. Getty, P. J. Green (2007) Clinical applications for stereoscopic 3-D displays. Journal of the Society for Information Display. 15(6):377–384CrossRefGoogle Scholar
  58. 58.
    J. Hsu, C. F. Babbs, D. M. Chelberg, Z. Pizlo (1993) Study of the effectiveness of stereo imaging with applications in mammography. Proceedings of SPIE. 1913:154–165CrossRefGoogle Scholar
  59. 59.
    A. Smith (2005) Full field breast tomosynthesis. Radiological Management. 27(5):25–31Google Scholar
  60. 60.
    L. J. Webb, E. Samei, J. Y. Lo, J. A. Baker, S. V. Ghate, C. Kim, M. S. Soo, R. Walsh (2011) Comparaive performance of multiview stereoscopic mammographic display modalities for breast lesion detection. Med. Phys. 38(4):1972–1980CrossRefGoogle Scholar
  61. 61.
    T. M. Satava, S. B. Jones (2002) Medical applications of virtual environments. In: Stanney, KM (ed) Handbook of Virtual Environments: Design, Implementation, and Applications, Lawrence Erlbaum Associates, New Jersey 937–957Google Scholar
  62. 62.
    T. J. White, G. R. Avery, N. Kennan, A. M. Syed, J. E. Hartley, J. R. T. Monson (2009) Virtual colonoscopy versus conventional colonoscopy in patients at high risk of colorectal cancer — a prospective trial of 150 patients. Colorectal Disease. 11(2):138–145CrossRefGoogle Scholar
  63. 63.
    P. Sharma, P. A. Sample, L. M. Zangwill, J. S. Schuman (2008) Diagnostic tools for glaucoma detection and management. Survey of Opthalmology. 53(1):s17–s32Google Scholar
  64. 64.
    P. Seuntiëns, L. M. J. Meesters, W. A. IJsselsteijn (2005) Perceptual attributes of crosstalk in 3D images. Displays. 26(4):177–183CrossRefGoogle Scholar
  65. 65.
    B. Reitinger, A. Bornik, R. Beichel, D. Schmalstieg (2006) Liver surgery planning using virtual reality. IEEE Computer Graphics and Applications. 26(6): 36–47CrossRefGoogle Scholar
  66. 66.
    R. Shahidi, R. Tombropoulos, P. Grzeszczuk (1998) Clinical applications of three-dimensional rendering of medical data sets. Proceedings of the IEEE. 86(3):555–568CrossRefGoogle Scholar
  67. 67.
    B. Reggiani, L. Cristofolini, E. Varini, M. Viceconti (2007) Predicting the subject-specific primary stability of cementless implants during pre-operative planning: Preliminary validation of subject-specific finite-element models. Journal of Biomechanics. 40(11):2552–2558CrossRefGoogle Scholar
  68. 68.
    R. J. Hubbold, D. J. Hancock, C. J. Moore (1999) Autostereoscopic display for radiotherapy planning. Proceedings SPIE. 3012: 16–27CrossRefGoogle Scholar
  69. 69.
    M. Hegarty, M. Keehner, C. Cohen, D. R Montello, Y. Lippa (2007) The role of spatial cognition in medicine: Applications for selecting and training professionals. In Allen, G.L. (ed) Applied spatial cognition, Lawrence Erlbaum Associates, Mahwah, New Jersey, 285–315Google Scholar
  70. 70.
    A. Cuschieri (1995) Visual displays and visual perception in minimal access surgery. Seminars in Laparoscopic Surgery. 2(3):209–214Google Scholar
  71. 71.
    J. Hofmeister, T. G. Frank, A. Cuschieri, N. J. Wade (2001) Perceptual aspects of two-dimensional and stereoscopic display techniques in endoscopic surgery: review and current problems. Seminars of Laparoscopic Surgery. 8(1):12–24CrossRefGoogle Scholar
  72. 72.
    Hanna GB, Cuschieri A (2000) Influence of two-dimensional and three-dimensional imaging on endoscopic bowel suturing. World Journal of Surgery 24(4): 444–449.CrossRefGoogle Scholar
  73. 73.
    S. H. Kong, B. M. Oh, H. Yoon, H. S. Ahn, H. J. Lee, S. G. Chung, N. Shiraishi, S. Kitano, H. K. Yang (2010) Comparison of two and three dimensional camera systems in laparoscopic performance: A novel 3D system with one camera. Surgical endoscopy. 24(5):1132–1143CrossRefGoogle Scholar
  74. 74.
    U. D. Mueller-Richter, A. Limberger, P. Weber, W. Spitzer, M. Schilling (2003) Comparison between three-dimensional presentation of endoscopic procedures with polarization glasses and an autostereoscopic display. Surgical Endoscopy. 17(3):502–504sCrossRefGoogle Scholar
  75. 75.
    A. Tabaee, V. K. Anand, J. F. Fraser, S. M. Brown, A. Singh, T. H. Schwartz (2009) Three dimensional endoscopic pituitary surgery. Operative neurosurgery. 64(5):288–295Google Scholar
  76. 76.
    M. N. Thomsen, D. Robert, M. D. Lang (2004) An experimental comparison of 3-dimensional and 2-dimensional endoscopic systems in a model. The Journal of Arthroscopic and Related Surgery. 20(4):419–423CrossRefGoogle Scholar
  77. 77.
    M. Wentink, J. J. Jakimowicz, L. M. Vos, D. W. Meijer, P. A. Wieringa (2002) Quantitative evaluation of three advanced laparoscopic viewing technologies: a stereo endoscope, an image projection display, and a TFT display. Surgical Endoscopy. 16(8):1237–1241CrossRefGoogle Scholar
  78. 78.
    A. Pietrabissa, E. Scarcello, A. Carobbi, F. Mosca (1994) Three-dimensional versus two-dimensional video system for the trained endoscopic surgeon and the beginner. Endoscopic Surgery and allied technologies. 2(6):315–317Google Scholar
  79. 79.
    V. Falk, D. Mintz, J. Grunenfelder, J. I. Fann, T. A. Burdon (2001) Influence of three-dimensional vision on surgical telemanipulator performance. Surgical Endoscopy. 15(11):1282–1288CrossRefGoogle Scholar
  80. 80.
    C. A. Lagrange, C. J. Clark, E. W. Gerber, S. E. Strup (2008) Evaluation of three laparoscopic modalities: Robotics versus three-dimensional vision laparoscopy versus standard laparoscopy. Journal of Endourology. 22(3):511–516CrossRefGoogle Scholar
  81. 81.
    A. Blavier, Q. Gaudissart, G. B. Cadiere, A. S. Nyssen (2007) Perceptual and instrumental impacts of robotic laparoscopy on surgical performance. Surgical Endoscopy. 21(10):1875–1882CrossRefGoogle Scholar
  82. 82.
    G. Hubens, H. Coveliers, L. Balliu, M. Ruppert, W. Vaneerdeweg (2003) A performance study comparing manual and robotically assisted laparoscopic surgery using the da Vinci system. Surgical Endoscopy. 17(10):1595–1599CrossRefGoogle Scholar
  83. 83.
    J. W. Huber, N. Taffinder, R. C. G. Russell, A. Darzi (2003) The effects of different viewing conditions on performance in simulated minimal access surgery. Ergonomics. 46(10): 999–1016CrossRefGoogle Scholar
  84. 84.
    J. C. Byrn, S. Schluender, C. M. Divino, J. Conrad, B. Gurland, E. Shlasko (2007) Three-dimensional imaging improves surgical performance for both novice and experienced operators using the da Vinci Robot System. The American Journal of Surgery. 193(4):519–522CrossRefGoogle Scholar
  85. 85.
    I. C. Jourdan, E. Dutson, A. Garcia, T. Vleugels, J. Leroy, D. Mutter (2004) Stereoscopic vision provides a significant advantage for precision robotic laparoscopy. British Journal of Surgery. 91(7):879–885CrossRefGoogle Scholar
  86. 86.
    Y. Munz, K. Moorthy, A. Dosis, D. Hernandez (2004) The benefits of stereoscopic vision in robotic-assisted performance on bench models. Surgical Endoscopy. 18(4):611–616CrossRefGoogle Scholar
  87. 87.
    J.F. Fraser, B. Allen, V.K. Anand, T.H. Schwartz (2009) Three dimensional neurostereoendoscopy: Subjective and objective comparison to 2D. Minimal invasive neurosurgery 52(1):25–31CrossRefGoogle Scholar
  88. 88.
    N. V. Vasilyev, P. M. Novotny, J. F. Martinez, H. Loyola, I. S. Salgo, R. D. Howe, P. J. del Nido (2008) Stereoscopic vision displays technology in real-time three-dimensional echocardiography-guided intracardiac beating-heart surgery. The Journal of Thoracic and Cardiovascular Surgery. 135:1334–1341CrossRefGoogle Scholar
  89. 89.
    J. M. Luursema, P. A. M. Kommers, W. B. Verweij (2004) Stereopsis in medical virtual learning environments. Studies in Health Technology and Informatics. 103:262–269Google Scholar
  90. 90.
    C. E. Lathan, M. R. Tracey, M. M. Sebrechts, D. M. Clawson, G. A. Higgens (2002) Using virtual environments as training simulators: Measuring transfer. In: Stanney, KM (ed), Handbook of Virtual Environments: Design, Implementation, and Applications, Lawrence Erlbaum Associates, New Jersey, 403–414Google Scholar
  91. 91.
    J. Owczarczyk, B. Owczarczyk (1990) Evaluation of true 3D display systems for visualizing medical volume data, The Visual Computer. 6(4):219–226CrossRefGoogle Scholar
  92. 92.
    J. M. Luursema, W. B. Verweij, P. A. M. Kommers, J. H. Annema (2008) The role of stereopsis in virtual anatomical learning. Interacting with Computers. 20(4–5):455–460CrossRefGoogle Scholar
  93. 93.
    J. Ilgner, J. Jae-Hyun park, D. Labbé (2007) Using a high-definition stereoscopic video system to teach microscopic surgery. Proceedings of the SPIE. 6490:1–7Google Scholar
  94. 94.
    R. Aggarwal K. Moorthy, A. Darz (2004) Laparoscopic skills training and assessment. British Journal of Surgery 91(12):1549–1558CrossRefGoogle Scholar
  95. 95.
    K. Votanopoulos, F. C. Brunicardi, J. Thornby, C. F. Bellows (2008) Impact of three-dimensional vision in laparoscopic training. World Journal of Surgery. 32(1):110–118CrossRefGoogle Scholar

Copyright information

© 3D Display Research Center and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. H. P. H. van Beurden
    • 1
    Email author
  • W. A. IJsselsteijn
    • 1
  • J. F. Juola
    • 1
    • 2
  1. 1.Human-Technology Interaction Group, Department of Industrial Engineering and Innovation SciencesEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department of PsychologyUniversity of KansasLawrenceUSA

Personalised recommendations