3D Research

, 2:4 | Cite as

Autofocusing in digital holographic microscopy

  • Patrik Langehanenberg
  • Gert von Bally
  • Björn Kemper
3DR Review

Abstract

Many applications in non-destructive testing at a microscopic level and in live cell imaging require automated focusing due to unstable environmental conditions, moving specimen or the limited depth of field of the applied optical imaging systems. Digital holography permits the recording and the numerical reconstruction of optical wave fields in amplitude and phase. This enables imaging of multiple focal planes from a single recorded hologram without mechanical realignment. The combination of numerical refocusing with image sharpness quantification algorithms yields subsequent autofocusing. With calibrated optical imaging systems this feature can be used also to determine the position and axial displacements of a sample. In order to show the application potential of digital holographic autofocusing in microscopy the method and results from investigations on several amplitude and phase objects are reviewed. This includes a demonstration of the reliability of automated refocusing, multi-focus quantitative phase contrast imaging of suspended cells, refocusing of quantitative phase contrast images during the analysis of the temporal dependency of cell spreading on surfaces and the quantification of toxin mediated morphological cell alterations during long-term observations. It is also shown for the example of sedimenting red blood cells that the method can be applied for minimally-invasive tracking of multiple particles. Finally, the usage of numerical autofocus for quantitative migration analysis of arbitrary shaped cells in a three-dimensional collagen matrix is demonstrated.

Keywords

digital holographic microscopy quantitative phase contrast multi-focus imaging holographic autofocus cell analysis non destructive testing automated 3D tracking 

References

  1. 1.
    J. W. Goodmann, R. W. Lawrence (1967) Digital image formation from electronically detected holograms, Appl. Phys. Lett. 11: 77–79CrossRefGoogle Scholar
  2. 2.
    U. Schnars, W. Jüptner (1994) Direct recording of holograms by a CCD target and numerical reconstruction, Appl. Opt. 33: 179–181CrossRefGoogle Scholar
  3. 3.
    W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, C. K. Rhodes (1992) Fourier-transform holographic microscope, Appl. Opt. 31: 4973–4978CrossRefGoogle Scholar
  4. 4.
    E. Cuche, F. Bevilacqua, C. Depeursinge (1999) Digital holography for quantitative phase-contrast imaging, Opt. Lett. 24(5): 291–93CrossRefGoogle Scholar
  5. 5.
    Y. Takaki, H. Ohzu (1999) Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy, Appl. Opt. 38: 2204–2211CrossRefGoogle Scholar
  6. 6.
    P. Pedrini, S. Schedin, H. J. Tiziani (2000) Spatial filtering in digital holographic microscopy, J. Mod. Opt. 47: 1447–1454CrossRefGoogle Scholar
  7. 7.
    W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer (2001) Digital in-line holography for biological applications, PNAS 98: 11301–11305CrossRefGoogle Scholar
  8. 8.
    M. Kanka, R. Riesenberg, H. J. Kreuzer (2009) Reconstruction of high-resolution holographic microscopic images, Opt. Lett. 34: 1162–1164CrossRefGoogle Scholar
  9. 9.
    W. Yang, A. B. Kostinski, R. A. Shaw (2006) Phase signature for particle detection with digital in-line holography, Opt. Lett. 31: 1399–1401CrossRefGoogle Scholar
  10. 10.
    E. Cuche, P. Marquet, C. Depeursinge (1999) Simultaneous amplitude contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms, Appl. Opt. 38: 6694–7001CrossRefGoogle Scholar
  11. 11.
    D. Carl, B. Kemper, G. Wernicke, G. von Bally (2004) Parameteroptimized digital holographic microscope for high-resolution livingcell analysis, Appl. Opt. 43: 6536–6544CrossRefGoogle Scholar
  12. 12.
    P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge (2005) Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy, Opt. Lett. 30: 468–470CrossRefGoogle Scholar
  13. 13.
    C. J. Mann, L. Yu, C.-M. Lo, M. K. Kim (2005) High-resolution quantitative phase-contrast microscopy by digital holography, Opt. Express. 13: 8693–8698CrossRefGoogle Scholar
  14. 14.
    P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, V. Striano (2005) Extended focused image in microscopy by digital Holography, Opt. Express. 13: 6738–6749CrossRefGoogle Scholar
  15. 15.
    M. Antkowiak, N- Callens, C. Yourassowsky, F. Dubois (2008) Extended focused imaging of a microparticle field with digital holographic microscopy, Opt. Lett. 33: 1626–1628CrossRefGoogle Scholar
  16. 16.
    T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, Y. Emery (2010) Extended depth-of-focus by digital holographic microscopy, Opt. Lett. 35: 1840–1842CrossRefGoogle Scholar
  17. 17.
    J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, C. Depeursinge (2007) Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition, Opt. Express. 15: 7231–7242CrossRefGoogle Scholar
  18. 18.
    B. Kemper, G. von Bally (2008) Digital holographic microscopy for live cell applications and technical inspection, Appl. Opt. 47: A52–A61CrossRefGoogle Scholar
  19. 19.
    F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, C. Depeursinge (2006) Characterization of microlenses by digital holographic microscopy, Appl. Opt. 45: 829–835CrossRefGoogle Scholar
  20. 20.
    B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, G. von Bally (2006) Investigation of living pancreas tumor cells by digital holographic microscopy, J. Biomed. Opt. 11: 034005CrossRefGoogle Scholar
  21. 21.
    P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, G. Pierattini (2003) Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time, Opt. Lett. 28: 1257–1259CrossRefGoogle Scholar
  22. 22.
    M. Liebling, M. Unser (2004) Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion, J. Opt. Soc. Am. A 21: 2424–2430MathSciNetCrossRefGoogle Scholar
  23. 23.
    F. Dubois, C. Schockaert, N. Callens, C. Yourassowsky (2006) Focus plane detection criteria in digital holography microscopy by amplitude analysis, Opt. Express. 14: 5895–5908CrossRefGoogle Scholar
  24. 24.
    P. Langehanenberg, B. Kemper, G. von Bally (2007) Autofocus algorithms for digital-holographic microscopy, Proc. SPIE 6633, 66330EGoogle Scholar
  25. 25.
    W. Li, N. C. Loomis, Q. Hu, C. S. Davis (2007) Focus detection, from digital in-line holograms based on spectral l1 norms, J. Opt. Soc. Am. A 24: 3054–3062CrossRefGoogle Scholar
  26. 26.
    P. Langehanenberg, B. Kemper, D. Dirksen, G. von Bally (2008) Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging, Appl. Opt. 47: D176–D182CrossRefGoogle Scholar
  27. 27.
    Y. Yang, B. Kang, Y. Choo (2008) Application of the correlation coefficient method for determination of the focal plane to digital particle holography, Appl. Opt. 47: 817–824CrossRefGoogle Scholar
  28. 28.
    M. L. Tachiki, M. Itoh, T. Yatagai (2008) Simultaneous depth determination of multiple objects by focus analysis in digital holography, Appl. Opt. 47: D144–D153CrossRefGoogle Scholar
  29. 29.
    F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros (2006) Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration, J. Biomed. Opt. 11: 054032CrossRefGoogle Scholar
  30. 30.
    P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, B. Kemper (2009) Automated three-dimensional tracking of living cells by digital holographic microscopy, J. Biomed. Opt. 14: 014018CrossRefGoogle Scholar
  31. 31.
    U. Schnars, W. Jüptner (2002) Digital recording and numerical reconstruction of holograms, Meas. Sci. Technol. 13: R85–R101CrossRefGoogle Scholar
  32. 32.
    L. Yaroslavsky (2004) Digital Holography and Digital Image Processing: Principles, Methods, Algorithms, Kluwer Academic Publishers Google Scholar
  33. 33.
    T. Kreis (2005) Handbook of Holographic Interferometry: Optical and Digital Methods, Wiley-VCH Google Scholar
  34. 34.
    M.K. Kim, L. Yu, C.J. Mann (2006) Interference techniques in digital holography, J. Opt. A 8: S518–523CrossRefGoogle Scholar
  35. 35.
    T.-C. Poon (2006) Digital Holography and Three-Dimensional Display, Springer Google Scholar
  36. 36.
    M. Liebling, T. Blu, M. Unser (2004) Complex-wave retrieval from a single off-axis hologram, J. Opt. Soc. Am. A 21: 367–377CrossRefGoogle Scholar
  37. 37.
    B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, G. von Bally (2006) Investigation of living pancreas tumor cells by digital holographic microscopy, J. Biomed. Opt. 11: 034005CrossRefGoogle Scholar
  38. 38.
    T. Colomb, F. Montfort, C. Depeursinge (2008) Small Reconstruction Distance in Convolution Formalism, in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America), paper DMA4Google Scholar
  39. 39.
    T. Kreis (1996) Holographic Interferometry: Principles and Methods, Akademie Publishing Google Scholar
  40. 40.
    P. Marquet, B. Rappaz, F. Charrière, Y. Emery, C. Depeursinge, P. Magistretti (2007) Analysis of cellular structure and dynamics with digital holographic microscopy, Proc SPIE 6633, 66330FGoogle Scholar
  41. 41.
    G. Nomarski (1955) Differential microinterferometer with polarized waves, J. Phys. Radium. 16: 9–13Google Scholar
  42. 42.
    Y. Sun, S. Duthaler, B. J. Nelson (2004) Autofocusing in computer microscopy: selecting the optimal focus algorithm, Microsc. Res. Tech. 65: 139–149CrossRefGoogle Scholar
  43. 43.
    F. C. Groen, I. T. Young, G. Ligthart (1985) A comparison of different focus functions for use in autofocus algorithms, Cytometry 6: 81–91CrossRefGoogle Scholar
  44. 44.
    L. Firestone, K. Cook, K. Culp, N. Talsania, K. Preston Jr (1991) Comparison of autofocus methods for automated microscopy, Cytometry 12: 195–206CrossRefGoogle Scholar
  45. 45.
    M. Bravo-Zanoguera, B. v. Massenbach, A. L. Kellner, J. H. Price (1998) High-performance autofocus circuit for biological microscopy, Rev. Sci. Instrum. 69: 3966–3977CrossRefGoogle Scholar
  46. 46.
    J. He, R. Zhou, Z. Hong (2003) Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera, IEEE Transactions on Consumer Electronics 49: 257–262CrossRefGoogle Scholar
  47. 47.
    B. Kemper, D. Carl, A. Höink, G. von Bally, I. Bredebusch, J. Schnekenburger (2006) Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells, Proc. SPIE 6191, 61910TGoogle Scholar
  48. 48.
    M. Bielaszewska, A. Bauwens, L. Greune, B. Kemper, U. Dobrindt, J. M. Geelen, K. S. Kim, A. Schmidt, H. Karch (2009) Vacuolization of human microvascular endothelial cells by enterohaemorrhagic Escherichia coli, Thrombosis and Haemostasis 102: 1080–1092Google Scholar
  49. 49.
    B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, J. Schnekenburger (2007) Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy, J. Biomed. Opt. 12: 054009CrossRefGoogle Scholar
  50. 50.
    B. Kemper, P. Langehanenberg, Gert von Bally (2007) Methods and applications for marker-free quantitative digital holographic phase contrast imaging in life cell analysis, Proc. SPIE 6796, 67960EGoogle Scholar
  51. 51.
    B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, G. von Bally (2009) Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy, Proc SPIE 7184, 71840RGoogle Scholar
  52. 52.
    B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, G. von Bally (2010) Label-free Quantitative Cell Division Monitoring of Endothelial Cells by Digital Holographic Microscopy, J. Biomed. Opt. 15: 036009CrossRefGoogle Scholar
  53. 53.
    B. Kemper, P. Langehanenberg, A. Vollmer, S. Ketelhut, G. von Bally (2010) Digital Holographic Microscopy — Label-free 3D Migration Monitoring of Living Cells, Imaging and Microscopy. 4: 26–28Google Scholar

Copyright information

© 3D Display Research Center and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Patrik Langehanenberg
    • 1
  • Gert von Bally
    • 1
  • Björn Kemper
    • 1
  1. 1.Center for Biomedical Optics and PhotonicsUniversity of MuensterMuensterGermany

Personalised recommendations