Advertisement

Psychometrika

, Volume 71, Issue 2, pp 219–229 | Cite as

Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices

  • Alwin Stegeman
  • Jos M. F. Ten Berge
  • Lieven De Lathauwer
Article

Abstract

A key feature of the analysis of three-way arrays by Candecomp/Parafac is the essential uniqueness of the trilinear decomposition. We examine the uniqueness of the Candecomp/Parafac and Indscal decompositions. In the latter, the array to be decomposed has symmetric slices. We consider the case where two component matrices are randomly sampled from a continuous distribution, and the third component matrix has full column rank. In this context, we obtain almost sure sufficient uniqueness conditions for the Candecomp/Parafac and Indscal models separately, involving only the order of the three-way array and the number of components in the decomposition. Both uniqueness conditions are closer to necessity than the classical uniqueness condition by Kruskal.

Keywords

Candecomp Parafac Indscal three-way arrays uniqueness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carroll, J.D., & Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart–Young decomposition. Psychometrika, 35, 283–319.CrossRefGoogle Scholar
  2. Fisher, F.M. (1966). The identification problem in econometrics. New York: McGraw-Hill.Google Scholar
  3. Harshman, R.A. (1970). Foundations of the Parafac procedure: Models and conditions for an “explanatory“ multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1–84.Google Scholar
  4. Harshman, R.A. (1972). Determination and proof of minimum uniqueness conditions for Parafac–1. UCLA Working Papers in Phonetics, 22, 111–117.Google Scholar
  5. Jiang, T., & Sidiropoulos, N.D. (2004). Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints. IEEE Transactions on Signal Processing, 52, 2625–2636.CrossRefGoogle Scholar
  6. Kruskal, J.B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics. Linear Algebra and its Applications, 18, 95–138.CrossRefGoogle Scholar
  7. Kruskal, J.B., Harshman, R.A., & Lundy, M.E. (1989). How 3-MFA data can cause degenerate Parafac solutions, among other relationships. In: R. Coppi, & S. Bolasco (Eds.), Multiway data analysis (pp. 115–121). Amsterdam: North-HollandGoogle Scholar
  8. De Lathauwer, L. (2006). A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM Journal of Matrix Analysis and Application, to appear.Google Scholar
  9. Leurgans, S.E., Ross, R.T., & Abel, R.B. (1993). A decomposition for three-way arrays. SIAM Journal on Matrix Analysis and Applications, 14, 1064–1083.CrossRefGoogle Scholar
  10. Sidiropoulos, N.D., & Bro, R. (2000). On the uniqueness of multilinear decomposition of n-way arrays. Journal of Chemometrics, 14, 229–239.CrossRefGoogle Scholar
  11. Stegeman, A., & Ten Berge, J.M.F. (2006). Kruskal's condition for uniqueness in Candecomp/Parafac when ranks and k-ranks coincide. Computational Statistics and Data Analysis, 50, 210–220.CrossRefGoogle Scholar
  12. Ten Berge, J.M.F., & Sidiropoulos, N.D. (2002). On uniqueness in Candecomp/Parafac. Psychometrika, 67, 399–409.CrossRefGoogle Scholar
  13. Ten Berge, J.M.F., Sidiropoulos, N.D., & Rocci, R. (2004). Typical rank and Indscal dimensionality for symmetric three-way arrays of order I×2×2 or I×3×3. Linear Algebra and Applications, 388, 363–377.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Alwin Stegeman
    • 1
    • 3
  • Jos M. F. Ten Berge
    • 1
  • Lieven De Lathauwer
    • 2
  1. 1.University of GroningenGroningen
  2. 2.ETISUMR 8051
  3. 3.Heijmans Institute of Psychological ResearchUniversity of GroningenGroningenThe Netherlands

Personalised recommendations