Advertisement

CEAS Aeronautical Journal

, Volume 10, Issue 3, pp 665–685 | Cite as

Aerodynamic design optimization of a helicopter rotor blade-sleeve fairing

  • P. PölzlbauerEmail author
  • D. Desvigne
  • C. Breitsamter
Original Paper
  • 152 Downloads

Abstract

Within the Clean Sky 2 project full fairing rotor head aerodynamic design optimization (FURADO), the aerodynamic design optimization of a full-fairing rotor head by means of CFD simulations is conducted. The rotor head is developed for a novel compound helicopter known as rapid and cost-effective rotorcraft (RACER). The FURADO project deals with three main components, the blade-sleeve fairing, the full-fairing beanie and the pylon fairing. Within the scope of the present publication, the two-dimensional aerodynamic design optimization of the RACER blade-sleeve fairing sections is at focus. The optimized two-dimensional shapes represent the supporting structure for the three-dimensional blade-sleeve fairing. For the optimization purpose, a sophisticated optimization tool chain allowing for automated aerodynamic design optimization is developed and the demonstration of its functionality is presented. The actual tool chain represents a modular software package, which has been developed within the FURADO project. In the first part of the publication, an introduction to the tool chain and the applied methods is given and subsequently, the results concerning the design optimization of a selected rotor blade-sleeve section are illustrated. The modules of the tool chain comprise state of the art software regarding computer aided design, mesh generation and numerical flow simulation. Concerning the optimization approach, a multi-objective genetic algorithm is employed to cover a wide range of the design space and to allow for the independent evaluation of multiple objective functions without weighting. Further, the gradual development of the Pareto-frontier can be observed and the most promising designs are thoroughly investigated.

Keywords

Design optimization CFD Helicopter aerodynamics Blade-sleeve fairing Drag reduction RACER 

Abbreviations

\((C_{\text {d}})_{\text {ref}}\)

Reference drag coefficient (Symmetric reference geometry)

\((C_{\text {d}})_{\text {rel}}\)

Normalized drag coefficient, \((C_{\text {d}})_{\text {rel}}=\frac{C_{\text {d}}}{|(C_{\text {d}})_{\text {ref}}|}\)

\((C_{\text {l}})_{\text {ref}}\)

Reference lift coefficient (Symmetric reference geometry)

\((C_{\text {l}})_{\text {rel}}\)

Normalized lift coefficient, \((C_{\text {l}})_{\text {rel}}=\frac{C_{\text {l}}}{|(C_{\text {l}})_{\text {ref}}|}\)

\(\alpha\)

Angle of attack

\(\lambda\)

Thermal conductivity

\(\mu _{\infty }\)

Dynamic viscosity

\(\nu\)

Kinematic viscosity

\(\psi\)

Azimuthal rotor blade position

\(\rho _{\infty }\)

Density

\(\tau _{\text {w}}\)

Wall shear stress

x

Design variable vector

z

Optimization objective vector, \(\mathbf {z}=f(\mathbf {x})\)

B(t)

Bézier curve function

\({b}_{{i,n}}\)(t)

Bernstein basis polynomial

\({B}_{{i}}\text {P}_{{jx}}\)

x-position of the Bézier control point

\({B}_{{i}}\text {P}_{{jz}}\)

z-position of the Bézier control point

c

Chord length

\({C}_{{\text {d}}}\)

Drag coefficient, \(C_{\text {d}}=\frac{D}{q_{\infty }\cdot S_{\text {ref}}}\)

\({C}_{{\text {f}}}\)

Skin-friction coefficient, \(C_{f}=\frac{\tau _{\text {w}}}{q_{\infty }}\)

\({C}_{{\text {l}}}\)

Lift coefficient, \(C_{\text {l}}=\frac{L}{q_{\infty }\cdot S_{\text {ref}}}\)

\({C}_{{\text {p}}}\)

Pressure coefficient, \(C_{{\text{p}}} = \frac{{p - p_{\infty } }}{{q_{\infty } }}\)

\({C}_{{\text {p}}}\)

Specific heat capacity

D

Drag

d

Diameter

f(x)

Objective function

\({g}_{{i}}\)(x)

Inequality constraint

\({h}_{{i}}\)(x)

Equality constraint

L

Lift

l

Length

M

Mach number

n

Rotor speed

\({p}_{{\infty }}\)

Ambient pressure

\({P}_{{1}}\)

Non-dominated set of candidates

\({P}_{{i}}\)

Bézier curve control point

\({q}_{{\infty }}\)

Dynamic pressure, \(q_{\infty }=\frac{\rho _{\infty }\cdot V_{\infty }^{2}}{2}\)

R

Rotor radius

r

Radius

\({S}_{\text{ref}}\)

Reference area, \(S_{\text {ref}}=c\cdot 0.001m\)

T

Total simulation time

t

Local coordinate

\({T}_{{\infty }}\)

Ambient temperature

\({t}_{\text{ave}}\)

Time-averaging interval

Tu

Turbulence intensity, \({\text{Tu}}=\frac{\sqrt{\frac{2}{3}k}}{U}\)

U

Mean velocity, \(U=\sqrt{U_{x}^{2}+U_{y}^{2}+U_{z}^{2}}\)

\({u}_\tau\)

Friction velocity, \(u_{\tau }=\sqrt{{\tau _{\text {w}}}/{\rho }}\)

V

Velocity magnitude

\({V}_{\infty }\)

Freestream velocity

x, y, z

Cartesian coordinates

\({y}^{+}\)

Dimensionless wall distance, \(y^{+}=\frac{u_{\tau }\cdot y}{\nu }\)

Notes

Acknowledgements

The authors would like to thank the European Union for the funding of the FURADO research project within the framework of Clean Sky 2 and under the Grant agreement number 685636. Further, the fruitful collaboration and valuable support of the project partner Airbus Helicopters is highly acknowledged. Special thanks are addressed to ANSYS for providing the flow simulation software. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (http://www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (http://www.lrz.de).

References

  1. 1.
    Adams, B., Ebeida, M., Eldred, M., Jakeman, J., Maupin, K., Monschke, J.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. User Manual v6.4, Sandia National Laboratories, Albuquerque, NM, USA (2016)Google Scholar
  2. 2.
  3. 3.
    ANSYS Inc.: Ansys icem cfd user’s manual. User Guide v17.0, Ansys Inc., Canonsburg, PA, USA (2016)Google Scholar
  4. 4.
    ANSYS Inc.: Fluent. User Guide v17.0, Ansys Inc., Canonsburg, PA, USA (2016)Google Scholar
  5. 5.
    Böhm, W., Farin, G., Kahmann, J.: A survey of curve and surface methods in CAGD. Comput. Aid. Geometr. Des. 1(1), 1–60 (1984).  https://doi.org/10.1016/0167-8396(84)90003-7 CrossRefzbMATHGoogle Scholar
  6. 6.
    Breitsamter, C., Grawunder, M., Reß, R.: Aerodynamic design optimization for a helicopter configuration including a rotating rotor head. In: Congress of the International Council of the Aeronautical Sciences. St. Petersburg, Russia, pp. 0686.1–0686.11 (2014)Google Scholar
  7. 7.
    Desvigne, D., Alfano, D.: Rotor-head/fuselage interactional effects on helicopter drag: influence of the complexification of the rotor-head geometry. In: European Rotorcraft Forum. Moscow, Russia (2013)Google Scholar
  8. 8.
    Dumont, A., Le Pape, A., Peter, J., Huberson, S.: Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the reynolds-averaged navierstokes equations. J. Am. Helicopter Soc. 56(3), 1–11 (2011).  https://doi.org/10.4050/JAHS.56.032002 CrossRefGoogle Scholar
  9. 9.
    Da Silva, C.: The x\(^{3}\) revolution. Rotor J. 88, 14–19 (2010)Google Scholar
  10. 10.
    European Commission: Clean Sky 2 Joint Technical Programme. Technical report, European Commission (2015)Google Scholar
  11. 11.
    Gerhold, T.: Overview of the hybrid rans code tau. MEGAFLOW–Numerical Flow Simulation for Aircraft Design 89 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 81–92. Springer, Berlin (2005)CrossRefGoogle Scholar
  12. 12.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co.Inc, Boston (1989)zbMATHGoogle Scholar
  13. 13.
    Graham, D., Sung, D., Young, L., Louie, A., Stroub, R.: Helicopter hub fairing and pylon interference drag. Technical Memorandum 101052, NASA-Ames Research Center, Moffet Field, CA, USA (1989)Google Scholar
  14. 14.
    Grawunder, M., Reß, R., Stein, V., Breitsamter, C., Adams, N.: Flow Simulation of a Five-Bladed Rotor Head, pp. 235–243. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-03158-3_24 Google Scholar
  15. 15.
    Kalyanmoy, D.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)zbMATHGoogle Scholar
  16. 16.
    Khier, W.: Numerical analysis of hub and fuselage interference to reduce helicopter drag. In: European Rotorcraft Forum. Amsterdam, Netherlands (2012)Google Scholar
  17. 17.
    Khier, W.: Computational investigation of advanced hub fairing configurations to reduce helicopter drag. In: European Rotorcraft Forum. Southampton, United Kingdom (2014)Google Scholar
  18. 18.
    Le Pape, A.: Numerical aerodynamic optimization of helicopter rotors: multi-objective optimization in hover and forward flight conditions. In: European Rotorcraft Forum. Florence, Italy (2005)Google Scholar
  19. 19.
    McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000).  https://doi.org/10.2307/1271432 CrossRefzbMATHGoogle Scholar
  20. 20.
    Menter, F.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994).  https://doi.org/10.2514/3.12149 CrossRefGoogle Scholar
  21. 21.
    Roca Leon, E., Alfano, D., Le Pape, A., Desideri, J., Costes, M.: Concurrent Aerodynamic Optimization of Rotor Blades using a Nash Game Method, pp. 1143–1155. American Helicopter Society International, Marignane Cedex (2013)Google Scholar
  22. 22.
    Rothlauf, F.: Design of Modern Heuristics: Principles and Application, 1st edn. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  23. 23.
    Salomon, D.: Curves and Surfaces for Computer Graphics. Springer, Secaucus (2005)zbMATHGoogle Scholar
  24. 24.
    Sederberg, T.: Computer aided geometric design. Course notes, Department of Computer Science, Brigham Young University (2016)Google Scholar
  25. 25.
    Sheehy, T., Clark, D.: A method for predicting helicopter hub drag. Final Report AD-A021 201, United Technologies Corporation, Stratford, CT, USA (1976)Google Scholar
  26. 26.
    Sung, D., Lance, M., Young, L., Stroub, R.: An experimental investigation of helicopter rotor hub fairing drag characteristics. Technical Memorandum 102182, NASA-Ames Research Center, Moffet Field, CA, USA (1989)Google Scholar
  27. 27.
    Technical University of Munich: FURADO Project Homepage (2017). http://www.cleansky-projects.tum.de/en/furado/
  28. 28.
    Wallis, W.D., George, J.C.: Introduction to Combinatorics. Discrete Mathematics and Its Applications. CRC, Boca Raton (2010). (ISBN 9781439806234) CrossRefzbMATHGoogle Scholar
  29. 29.
    Winkler, A.: Ein automatisiertes Verfahren zur aerodynamischen Formentwicklung. Dissertation, Technische Universität München. Dr. Hut Verlag (2011)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2018

Authors and Affiliations

  1. 1.Technical University of MunichGarchingGermany
  2. 2.Airbus HelicoptersMarignane CedexFrance

Personalised recommendations