Skip to main content
Log in

Porous ceramic scaffolds with complex architectures

  • Research Summary
  • Biological Materials Science
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Langer and J.P. Vacanti, Science, 260 (1993), pp. 920–926.

    Article  CAS  Google Scholar 

  2. A. Almirall et al., Biomat., 25 (2004), pp. 3671–3680.

    Article  CAS  Google Scholar 

  3. R.P. del Real et al., Biomat., 23 (2002), pp. 3673–3680.

    Article  Google Scholar 

  4. H.R. Ramay and M. Zhang, Biomat., 24 (2003), pp. 3293–3302.

    Article  CAS  Google Scholar 

  5. M. Sous et al., Biomat., 19 (1998), pp. 2147–2153.

    Article  CAS  Google Scholar 

  6. M. Kawata et al., J. Mater. Sci. Mater. Med., 15 (2004), pp. 817–823.

    Article  CAS  Google Scholar 

  7. J.C. Le Huec et al., Biomat., 16 (1995), pp. 113–120.

    Article  Google Scholar 

  8. D.-M. Liu, Ceramics International, 23 (1997), pp. 135–139.

    Article  CAS  Google Scholar 

  9. M. Milosevski et al., Ceramics International, 25 (1999), pp. 693–696.

    Article  CAS  Google Scholar 

  10. A. Bignon (Ph.D. Thesis, National Institute of Applied Science, Lyon, France, 2002).

  11. S. Michna, W. Wu, and J.A. Lewis, Biomat., 26 (2005), pp. 5632–5639.

    Article  CAS  Google Scholar 

  12. J. Russias et al., Journal of Biomedical Materials Research Part A, 83A (2007), pp. 434–445.

    Article  CAS  Google Scholar 

  13. J.E. Smay, J. Cesarano, and J.A. Lewis, Langmuir, 18 (2002), pp. 5429–5437.

    Article  CAS  Google Scholar 

  14. P. Miranda et al., Acta Biomaterialia, 2 (2006), pp. 457–466.

    Article  Google Scholar 

  15. S. Deville et al., Science, 311 (2006), pp. 515–518.

    Article  CAS  Google Scholar 

  16. S. Deville, E. Saiz, and A.P. Tomsia, Acta Materialia, 55 (2007), pp. 1965–1974.

    Article  CAS  Google Scholar 

  17. S. Deville, E. Saiz, and A.P. Tomsia, Biomat., 27 (2006), pp. 5480–5489.

    Article  CAS  Google Scholar 

  18. H.I. Zhang et al., Nature Materials, (2005), pp. 787–793.

  19. M.C. Gutierrez et al., Advanced Materials, 18 (2006), pp. 1137–1140.

    Article  CAS  Google Scholar 

  20. R. Murugan and S. Ramakrishna, Composites Science and Technology, 65 (2005), pp. 2385–2390.

    Article  CAS  Google Scholar 

  21. V. Karageorgiou and D. Kaplan, Biomat., 26 (2005), pp. 5474–5491.

    Article  CAS  Google Scholar 

  22. J.D. Hunt, Materials Science & Technology, 15 (1999), pp. 9–14.

    Article  CAS  Google Scholar 

  23. J.J. Klawitter and S.F. Hulbert, Journal of Biomedical Materials Research, 2 (1971), pp. 161–229.

    Article  Google Scholar 

  24. S.J. Simske, R.A. Ayers, and T.A. Bateman, Porous Materials for Tissue Engineering (Enfield, NH: Transtech, 1997), pp. 151–182.

    Google Scholar 

  25. A.I. Itala et al., Journal of Biomedical Materials Research, 58 (2001), pp. 679–683.

    Article  CAS  Google Scholar 

  26. Tithi Dutta Roy et al., Journal of biomedical Materials Research, 66A (2003), pp. 283–291.

    Article  CAS  Google Scholar 

  27. R.M. Pilliar et al., Biomat., 22 (2001), pp. 963–972.

    Article  CAS  Google Scholar 

  28. N. Tamai et al., Journal of Biomedical Materials Research, 59 (2002), pp. 110–117.

    Article  CAS  Google Scholar 

  29. S. Zmora, R. Glicklis, and S. Cohen, Biomat., 23 (2002), pp. 487–4094.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Tomsia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munch, E., Franco, J., Deville, S. et al. Porous ceramic scaffolds with complex architectures. JOM 60, 54–58 (2008). https://doi.org/10.1007/s11837-008-0072-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0072-5

Keywords

Navigation