Skip to main content
Log in

The mechanical threshold stress constitutive-strength model description of HY-100 steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A generalized three-term mechanical threshold stress (MTS) strength model description, considering athermal, thermal, and strain-hardening contributions to flow stress, is employed to characterize the constitutive stress-strain response of HY-100 steel. Aspects of the MTS framework pertinent to United States Navy HY steels are discussed, and a calibration methodology is presented for determining MTS strength model parameters. In addition, a linear strain-hardening modification to the existing structure-evolution expression (flow-stress saturation) is proposed to better describe the large-strain strain-hardening behavior. Polycrystalline plasticity calculations suggest that the linear-like hardening behavior is a consequence of deformation-path-dependent texture evolution. Calculation results are applied to MTS model stress-strain predictions and, in part, help explain the differences between compression and torsion test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.U. Mair and R.K. Garrett, Jr.: in Constitutive Laws: Theory, Experiments and Numerical Implementation, A.M. Rajendran and R.C. Batra, eds., CIMNE, Barcelona, 1995, pp. 1–17.

    Google Scholar 

  2. U.F. Kocks, A.S. Argon, and M.F. Ashby: Thermodynamic and Kinetics of Slip, Progress in Materials Science, Pergamon Press, NY, 1975, vol. 19.

    Google Scholar 

  3. U.F. Kocks: J. Eng. Mater. Technol. New York, 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  4. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  5. P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  6. U.F. Kocks, J.S. Kallend, A.D. Rollett, and S.I. Wright: Report No. LA-CC-89-18, Los Alamos National Laboratory, Los Alamos, NM, 1994.

  7. P.J. Maudlin and S.K. Schiferl: Comput. Meth. Appl. Mech. Eng., 1996, vol. 131, pp. 1–30.

    Article  Google Scholar 

  8. R. Hill: The Mathematical Theory of Plasticity, Oxford University Press, London, 1950.

    Google Scholar 

  9. S.R. Chen and G.T. Gray III: Report No. LA-UR-96-3534, Los Alamos National Laboratory, Los Alamos, NM, 1996.

  10. E. Voce: J. Inst Met., 1948, vol. 74, pp. 537–62.

    CAS  Google Scholar 

  11. S.R. Chen and G.T. Gray III: Los Alamos National Laboratory, Los Alamos, NM, unpublished research, 1998.

  12. Y. Tomita: Mater. Sci. Technol. 1991, vol. 7, pp. 299–306.

    CAS  Google Scholar 

  13. C.W. MacGregor and J.C. Fisher: J. Appl. Mech., 1946, vol. 68, pp. A11-A16.

    Google Scholar 

  14. S.R. Chen and G.T. Gray III: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2994–3006.

    CAS  Google Scholar 

  15. A. Beaudoin, Jr.: University of Illinois, Urbana-Champaign, Urbana, IL, private communication, 1998.

  16. S.R. Chen and G.T. Gray III: J. Phys. IV France, 1997, vol. 7, pp. C3-741–C3-746.

    Google Scholar 

  17. U.F. Kocks, M.G. Stout, and A.D. Rollett: in Strength of Metal and Alloys, ICSMA 8, P.O. Kettunen, T.K. Lepisto, and M.E. Lehtonen, eds., Pergamon Press, Oxford, United Kingdom, 1988, pp. 25–34.

    Google Scholar 

  18. R.K. Garrett, Jr., D.M. Goto, and J. Bingert: Los Alamos National Laboratory, Los Alamos, NM, unpublished research, 1998.

  19. X.F. Fang and W. Dahl: Mater. Sci. Eng., 1995, vol. A203, pp. 14–25.

    CAS  Google Scholar 

  20. A.D. Rollett: Ph.D. Thesis, Drexel University, Philadelphia, PA, 1988.

    Google Scholar 

  21. D. Kuhlmann-Wilsdorf: Metall. Trans. A, 1985, vol. 16A, pp. 2091–2108.

    Google Scholar 

  22. D. Kuhlmann-Wilsdorf and N. Hansen: Metall. Trans. A, 1989, vol. 20A, pp. 2393–97.

    CAS  Google Scholar 

  23. X.F. Fang and W. Dahl: Mater. Sci. Eng., 1995, vol. A203, pp. 36–45.

    CAS  Google Scholar 

  24. U.F. Kocks: in Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Material Properties, U.F. Kocks, C.N. Tomé, and H.-R. Wenk, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, p. 398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto, D.M., Garrett, R.K., Bingert, J.F. et al. The mechanical threshold stress constitutive-strength model description of HY-100 steel. Metall Mater Trans A 31, 1985–1996 (2000). https://doi.org/10.1007/s11661-000-0226-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0226-8

Keywords

Navigation