Skip to main content

Advertisement

Log in

General Classification of Maturation Reaction-Norm Shape from Size-based Processes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Phenotypic plasticity of size at maturation is commonly described using size–age maturation reaction norms (MRNs). MRNs for age and size at maturation are analyzed and classified into three general categories related to different size scalings of growth and mortality. The underlying model for growth and mortality is based on processes at the level of the individual, and is motivated by the energy budget of fish. MRN shape is a balance between opposing factors and depends on subtle details of size dependence of growth and mortality. MRNs with both positive and negative slopes are predicted, and for certain mortality conditions also a lower critical spawning mass. The model is applied to predict a generic fishery-induced evolutionary response and allows assessment of climate change impact on MRNs. Our work stresses the importance of using realistic size dependence of mortality and growth, since this strongly influences the predicted MRNs and sensitivity to harvest pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen, K. H., & Brander, K. (2009). Expected rate of fisheries-induced evolution is slow. Proc. Nat. Acad. Sci., 106(28), 11,657–11,660.

    Article  Google Scholar 

  • Andersen, K. H., Farnsworth, K. D., Thygesen, U. H., & Beyer, J. E. (2007). The evolutionary pressure from fishing on size at maturation of Baltic cod. Ecol. Model., 204(1–2), 246–252. doi:10.1016/j.ecolmodel.2007.01.002.

    Article  Google Scholar 

  • Berrigan, D., & Koella, J. (1994). The evolution of reaction norms: Simple models for age and size at maturity. J. Evol. Biol., 7(5), 549–566.

    Article  Google Scholar 

  • Blanchard, J., Dulvy, N., Jennings, S., Ellis, J., Pinnegar, J., Tidd, A., & Kell, L. (2005). Do climate and fishing influence size-based indicators of Celtic Sea fish community structure? ICES J. Mar. Sci., 62(3), 405–411. doi:10.1016/j.icesjms.2005.01.006.

    Article  Google Scholar 

  • Browman, H. I., Law, R., & Marshall, C. T. (2008). The role of fisheries-induced evolution. Science, 320(5872), 47.

    Article  Google Scholar 

  • Chambers, R. C. (1997). Environmental influences on egg and propagule sizes in marine fishes. In Chambers, R. C., & Trippel, E. A. (Eds.), Early life history and recruitment in fish populations (pp. 63–102). London: Chapman & Hall.

    Google Scholar 

  • Cury, P., Shannon, L., Roux, J., Daskalov, G., Jarre, A., Moloney, C., & Pauly, D. (2005). Trophodynamic indicators for an ecosystem approach to fisheries. ICES J. Mar. Sci., 62(3), 430–442. doi:10.1016/j.icesjms.2004.12.006.

    Article  Google Scholar 

  • Day, T., & Rowe, L. (2002). Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. Am. Nat., 159(4), 338–350.

    Article  Google Scholar 

  • Day, T., & Taylor, P. (1997). Von Bertalanffy’s growth equation should not be used to model age and size at maturity. Am. Nat., 149(2), 381–393.

    Article  Google Scholar 

  • Dunlop, E. S., Heino, M., & Dieckmann, U. (2009). Eco-genetic modeling of contemporary life-history evolution. Ecol. Appl., 19(7), 1815–1834.

    Article  Google Scholar 

  • Dunlop, E. S., Shuter, B. J., & Dieckmann, U. (2007). Demographic and evolutionary consequences of selective mortality: Predictions from an eco-genetic model for smallmouth bass. Trans. Am. Fish. Soc., 136(3), 749–765. doi:10.1577/T06-126.1.

    Article  Google Scholar 

  • Ernande, B., Dieckmann, U., & Heino, M. (2004). Adaptive changes in harvested populations: Plasticity and evolution of age and size at maturation. Proc. R. Soc. B: Biol. Sci., 271(1537), 415–423. doi:10.1098/rspb.2003.2519.

    Article  Google Scholar 

  • Gårdmark, A., & Dieckmann, U. (2006). Disparate maturation adaptations to size-dependent mortality. Proc. R. Soc. B: Biol. Sci., 273(1598), 2185–2192. doi:10.1098/rspb.2006.3562.

    Article  Google Scholar 

  • Heino, M. (1998). Management of evolving fish stocks. Can. J. Fish. Aquat. Sci., 55(8), 1971–1982.

    Article  Google Scholar 

  • Heino, M., & Dieckmann, U. (2008). Detecting fisheries-induced life-history evolution: An overview of the reaction-norm approach. Bull. Mar. Sci., 83(1), 69–93.

    Google Scholar 

  • Heino, M., Dieckmann, U., & Godø, O. (2002). Measuring probabilistic reaction norms for age and size at maturation. Evolution, 56(4), 669–678.

    Google Scholar 

  • Jobling, M. (1994). Fish and fisheries series : Vol. 13. Fish bioenergetics. London: Chapman & Hall.

    Google Scholar 

  • Jørgensen, C., Enberg, K., Dunlop, E. S., Arlinghaus, R., Boukal, D. S., Brander, K., Ernande, B., Gaerdmark, A., Johnston, F., Matsumura, S., Pardoe, H., Raab, K., Silva, A., Vainikka, A., Dieckmann, U., Heino, M., & Rijnsdorp, A. D. (2007). Ecology—managing evolving fish stocks. Science, 318(5854), 1247–1248. doi:10.1126/science.1148089.

    Article  Google Scholar 

  • Law, R. (2000). Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci., 57(3), 659–668.

    Article  MathSciNet  Google Scholar 

  • Law, R. (2007). Fisheries-induced evolution: present status and future directions. Mar. Ecol. Progr. Ser., 335, 271–277.

    Article  Google Scholar 

  • Law, R., & Grey, D. (1989). Evolution of yields from populations with age-specific cropping. Evol. Ecol., 3(4), 343–359.

    Article  Google Scholar 

  • Mylius, S., & Diekmann, O. (1995). On evolutionarily stable life histories, optimization and the need to be specific about density dependence. Oikos, 74(2), 218–224.

    Article  Google Scholar 

  • Peters, R. (1983). The ecological implications of body size. Cambridge: Cambridge University Press.

    Google Scholar 

  • Quince, C., Abrams, P. A., Shuter, B. J., & Lester, N. P. (2008). Biphasic growth in fish I: Theoretical foundations. J. Theor. Biol., 254(2), 197–206. doi:10.1016/j.jtbi.2008.05.029.

    Article  Google Scholar 

  • Reiss, M. J. (1991). The allometry of growth and reproduction. Cambridge: Cambridge University Press.

    Google Scholar 

  • Stearns, S., & Koella, J. (1986). The evolution of phenotypic plasticity in life-history traits. Predictions of reaction norms for age and size at maturity. Evolution, 40(5), 893–913.

    Article  Google Scholar 

  • Taborsky, B., Dieckmann, U., & Heino, M. (2003). Unexpected discontinuities in life-history evolution under size-dependent mortality. Proc. R. Soc. B: Biol. Sci., 270(1516), 713–721. doi:10.1098/rspb.2002.2255.

    Article  Google Scholar 

  • Thorpe, J. E. (2007). Maturation responses of salmonids to changing developmental opportunities. Mar. Ecol. Progr. Ser., 335, 285–288.

    Article  Google Scholar 

  • Thygesen, U., Farnsworth, K., Andersen, K., & Beyer, J. (2005). How optimal life history changes with the community size-spectrum. Proc. R. Soc. B: Biol. Sci., 272(1570), 1323–1331. doi:10.1098/rspb.2005.3094.

    Article  Google Scholar 

  • Vinberg, G. G. (1956). Rate of metabolism and food requirements of fishes. Fish. Res. Board Can., 194, 1–253.

    Google Scholar 

  • Ware, D. M. (1975). Growth, metabolism, and optimal swimming speed of a pelagic fish. Fish. Res. Board Can., 32(1), 33–41.

    MathSciNet  Google Scholar 

  • West, G. B., Brown, J. H., & Enquist, B. J. (2001). A general model for ontogenetic growth. Nature, 413, 628–631.

    Article  Google Scholar 

  • Wright, P. J. (2007). Understanding the maturation process for field investigations of fisheries-induced evolution. Mar. Ecol. Progr. Ser., 335, 279–283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asbjorn Christensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, A., Andersen, K.H. General Classification of Maturation Reaction-Norm Shape from Size-based Processes. Bull Math Biol 73, 1004–1027 (2011). https://doi.org/10.1007/s11538-010-9550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9550-3

Keywords

Navigation