Skip to main content
Log in

Divergence of the polytene chromosome banding sequences as a reflection of evolutionary rearrangements of the genome linear structure

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Banding sequences of five chromosomal arms (A, C, D, E, and F), accounting for about 70% of the total genome size in 63 Chironomus species, were used as markers to analyze divergence patterns of the linear genome structure during the evolution. The number of chromosomal breakpoints between the pairs of banding sequences compared served as a measure of divergence. It was demonstrated that the greater the divergence between the species compared, the higher the number of chromosomal breakpoints and the smaller the size of the conserved chromosomal segments. A banding sequences comparison in sibling species demonstrated a lower number of chromosomal breakpoints; the breakpoint number was maximum in a comparison of the banding sequences in the subgenera Chironomus and Camptochironomus. The use of the number of chromosomal breakpoints as a genome divergence measure provided establishment of phylogenetic relationships between 63 Chironomus species and discrimination of sibling species groups and cytocomplexes on a phylogenetic tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nadeau, J.H. and Taylor, B.A., Length of Chromosomal Segments Conserved Since Divergence of Man and Mouse, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 814–818.

    Google Scholar 

  2. Zakharov, I.A., Nikiforov, V.S., and Stepanyuk, E.V., Measuring Similarity in the Order of Homologous Genes, Genetika (Moscow), 1991, vol. 27, no.2, pp. 367–369.

    Google Scholar 

  3. Zakharov, I.A., Nikiforov, V.S., and Stepanyuk, E.V., Homology and Evolution of Gene Orders: Simulation and Reconstruction of the Evolutionary Process, Rus. J.Genet., 1997, vol. 33, no.1, pp. 24–30.

    Google Scholar 

  4. Sankoff, D. and Nadeau, J.H., Conserved Synteny As a Measure of Genomic Distance, Discrete Appl. Math., 1996, vol. 71, pp. 247–257.

    Google Scholar 

  5. Segarra, C. and Aguade, M., Molecular Organization of the X Chromosome in Different Species of the obscura Group of Drosophila, Genetics, 1992, vol. 130, pp. 513–521.

    Google Scholar 

  6. Segarra, C., Lozovskaya, E.R., Ribo, G., et al., P1 Clones from Drosophila melanogaster As Markers to Study the Chromosomal Evolution of Muller’s A Element in Two Species of obscura Group of Drosophila, Chromosoma, 1995, vol. 104, pp. 129–136.

    Google Scholar 

  7. Gonzales, J., Ranz, J.M., and Ruiz, A., Chromosome Elements Evolve at Different Rates in the Drosophila Genome, Genetics, 2002, vol. 161, pp. 1137–1154.

    Google Scholar 

  8. Keyl, H.-G., Chromosomenevolution bei Chironomus: II. Chromosomenumbauten und phylogenetische Beziehungen der Arten, Chromosoma, 1962, vol. 13, pp. 464–514.

    Google Scholar 

  9. Martin, J., Wuelker, W., and Sublette, J.E., Evolutionary Cytology in the Genus Chironomus Meig, Stud. Nat. Sci., 1974, vol. 1, pp. 1–12.

    Google Scholar 

  10. Martin, J., Chromosomes As Tools in Taxonomy and Phylogeny of Chironomidae (Diptera), Entomol. Scand., 1979, vol. 10,suppl., pp. 67–74.

    Google Scholar 

  11. Wuelker, W., Basic Patterns in the Chromosome Evolution of the Genus Chironomus (Diptera), Z. Zool. Syst. Evol., 1980, vol. 18, pp. 112–123.

    Google Scholar 

  12. Kiknadze, I.I., Shilova, A.I., Kerkis, I.E., et al., Kariotip i morfologiya lichinok triby Chironomini. Atlas (Karyotype and Morphology of Larvae of the Tribe Chironomini: An Atlas), Novosibirsk, 1991.

  13. Kiknadze, I.I., Istomina, A.G., Gunderina, L.I., et al., Kariofondy khironomid kriolitozony Yakutii. Triba Chironomini (Karyopools of Chironomidae of the Yakutian Cryolithozone: Tribe Chironomini), Novosibirsk, 1996.

  14. Wuelker, W., Dévai, G., and Dévai, I., Computer-Assisted Studies of Chromosome Evolution in the Genus Chironomus (Dipt.): Comparative and Integrated Analysis of Chromosome Arms A, E, and F, Acta Biol. Debr. Oecol. Hung., 1989, vol. 2, pp. 373–387.

    Google Scholar 

  15. Shobanov, N.A. and Zotov, S.A., Cytogenetic Aspects of Phylogeny of the Genus Chironomus Meigen (Diptera, Chironomidae), Entomol. Obozr., 2001, vol. 80, no.1, pp. 180–192.

    Google Scholar 

  16. Shobanov, N.A., Evolution of the Genus Chironomus (Dirtera, Chironomidae): 2. A Phylogenetic Model, Zool. Zh., 2002, vol. 81, no.6, pp. 711–718.

    Google Scholar 

  17. Scholl, A., Geiger, H.J., and Ryser, H.M., Die Evolution der Gattung Chironomus aus Biochemisch-Genetischer Sicht, in Chironomidae: Ecology, Systematics, Cytology and Physiology, Oxford: Pergamon, 1980, pp. 25–33.

    Google Scholar 

  18. Filippova, M.A., Gunderina, L.I., and Kiknadze, I.I., A Population-Genetic Study of the Species of the Chironomus Genus (Diptera: Chironomidae), Acta. Biol. Debr. Oecol. Hung., 1989, vol. 2, pp. 195–206.

    Google Scholar 

  19. Guriev, V., Makarevitch, I., Blinov, A., and Martin, J., Phylogeny of the Genus Chironomus (Diptera) Inferred from Sequences Mitochondrial Cytochrome b and Cytochrome Oxidase 1, Mol. Phylogenet. Evol., 2001, vol. 19, no.1, pp. 9–21.

    Google Scholar 

  20. Devai, G., Miskolczi, M., and Wuelker, W., Standardization of Chromosome Arms B, C, and D in Chironomus (Diptera, Chironomidae), Acta Biol. Debr. Oecol. Hung., 1989, vol. 2, pp. 79–92.

    Google Scholar 

  21. Kiknadze, I.I., Golygina, V.V., Istomina, A.G., and Gunderina, L.I., Pattern of Chromosome Polymorphism during Population and Species Divergence in Chironomis (Diptera, Chironomidae), Sib. Ekol. Zh., 2004, vol. 11, no.5, pp. 635–651.

    Google Scholar 

  22. Gunderina, L.I., Kiknadze, I.I., and Golygina, V.V., Intraspecific Differentiation of the Cytogenetic Structure in Natural Populations of Chironomus plumosus L., the Central Species in the Group of Sibling Species, Rus. J.Genet., 1999, vol. 35, no.2, pp. 142–150.

    Google Scholar 

  23. Golygina, V.V. and Kiknadze, I.I., The Karyofund of Chironomus plumosus (Diptera, Chironomidae) in Pale-arctic, Tsitologiya, 2001, vol. 43, pp. 507–519.

    Google Scholar 

  24. Gusev, V.D., Nemytikova, L.A., and Chuzhanova, N.A., Rapid Method for Identification of Interconnections between Functionally and/or Evolutionarily Related Biological Texts, Mol. Biol. (Moscow), 2001, vol. 35, no.6, pp. 1015–1022.

    Google Scholar 

  25. Kiknadze, I.I., Gunderina, L.I., Istomina, A.G., et al., Similarity Analysis of Inversion Banding Sequences of Chironomus Species (Breakpoint Phylogeny), in Bioinformatics of Genome Regulation and Structure, Boston, 2003, pp. 245–253.

  26. Saitou, N. and Nei, M., The Neighbour-Joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.

    Google Scholar 

  27. Kumar, S., Tamura, K., Jakobsen, I.B., and Nei, M., MEGA2: Molecular Evolutionary Genetic Analysis Software, Tempe, Arizona: Arizona State Univ., 2001.

    Google Scholar 

  28. Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1980.

    Google Scholar 

  29. Kiknadze, I.I., Blinov, A.G., and Kolesnikov, N.N., Molecular Cytological Organization of the Genome in Chironomidae, in Strukturno-funktsional’naya organizatsiya genoma (Structural and Functional Organization of the Genome), Novosibirsk: Nauka, 1989, pp. 4–58.

    Google Scholar 

  30. Eggleston, W.B., Rim, N.R., and Lim, J.K., Molecular Characterization of the hobo-Mediated Inversions in Drosophila melanogaster, Genetica, 1996, vol. 144, pp. 647–656.

    Google Scholar 

  31. Andolfatto, P., Wall, J.D., and Kreitman, M., Unusual Haplotype Structure at the Proximal Breakpoint of the In(2L)t in a Natural Population of Drosophila melanogaster, Genetics, 1999, vol. 153, pp. 1297–1311.

    Google Scholar 

  32. Cáceres, M., Ranz, J.M., Barbadilla, A., et al., Generation of a Widespread Drosophila Inversion by a Transposable Element, Science, 1999, vol. 285, pp. 415–418.

    Article  CAS  PubMed  Google Scholar 

  33. Evgen’ev, M.B., Zelentsova, H., Poluectova, H., et al., Mobile Elements and Chromosomal Evolution in virilis Group of Drosophila, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 11 337–11 342.

    Google Scholar 

  34. Casals, F., Caceres, M., and Ruiz, A., The Foldback-Like Transposon Galileo Is Involved in the Generation of Two Different Natural Chromosomal Inversions of Drosophila buzzatii, Mol. Biol. Evol., 2003, vol. 20, pp. 675–685.

    Google Scholar 

  35. Lyttle, T.W. and Haymer, D.S., The Role of Transposable Element hobo in the Origin of Endemic Inversions in Wild Populations of Drosophila melanogaster, Genetics, 1992, vol. 86, pp. 113–126.

    Google Scholar 

  36. Wesley, C.S. and Eanes, W.F., Isolation and the Analysis of the Breakpoint Sequences of Chromosome Inversion In(3L)Payne in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 3132–3136.

    Google Scholar 

  37. Cirera, S., Martin-Campos, J., Segarra, C., and Aguade, M., Molecular Characterization of the Breakpoints of an Inversion Fixed between Drosophila melanogaster and D. subobscura, Genetics, 1995, vol. 139, pp. 321–326.

    Google Scholar 

  38. Rozas, J., Segarra, C., Riby, C., and Aguade, M., Molecular Population Genetics of the rp49 Gene Region in Different Chromosomal Inversions of Drosophila sub-obscura, Genetics, 1999, vol. 151, pp. 189–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Genetika, Vol. 41, No. 2, 2005, pp. 187–195.

Original Russian Text Copyright © 2005 by Gunderina, Kiknadze, Istomina, Gusev, Miroshnichenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunderina, L.I., Kiknadze, I.I., Istomina, A.G. et al. Divergence of the polytene chromosome banding sequences as a reflection of evolutionary rearrangements of the genome linear structure. Russ J Genet 41, 130–137 (2005). https://doi.org/10.1007/s11177-005-0036-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11177-005-0036-6

Keywords

Navigation