Journal of Materials Science

, Volume 55, Issue 7, pp 2764–2771 | Cite as

Ba0.1Sr0.9Zr0.18Ti0.82O3 ceramics: dielectric properties and energy storage density under external electric field and temperature

  • Tao Zhang
  • Haibibu Aziguli
  • Yanhong Wu
  • Jie Yin
  • Ping YuEmail author


In order to develop the application of energy storage ceramics, the dielectric properties and energy storage density of Ba0.1Sr0.9Zr0.18Ti0.82O3 ceramics (BSZT-118) prepared by the modified sol–gel process were researched under different temperatures under electric field. The results show that the dielectric constant of BSZT-118 is consistent with Johnson’s formula based on Devonshire phenomenological theory, and the anharmonic constant (α) increases as the temperature rises. The energy storage density of BSZT-118 is influenced by the electric field and temperature. With the increase in temperature, the storage density of BSZT decreases and the fluctuation of storage density increases under electric field. The conduction mechanism of BSZT-118 is mainly space charge-limited conduction (SCLC) below 60 °C, and it is mainly Ohmic conduction above 60 °C.



This work is supported by the National Natural Science Foundation of China under Grant No. u1601208.

Compliance with ethical standards

Conflict of interest

The manuscript is approved by all authors for publication and there is no conflict of interest exits in the submission of this manuscript.


  1. 1.
    Hu Q, Wang T, Jin L et al (2014) Dielectric and energy storage properties of barium strontium titanate based glass–ceramics prepared by sol–gel method. J Sol–Gel Sci Technol 71(3):522–529CrossRefGoogle Scholar
  2. 2.
    Jo HR, Lynch CS (2016) A high energy density relaxor antiferroelectric pulsed capacitor dielectric. J Appl Phys 119(2):024104CrossRefGoogle Scholar
  3. 3.
    Wisken HG, Podeyn F, Weise HGG (2001) High energy density capacitors for ETC gun applications. IEEE Trans Magn 37(1):332–335CrossRefGoogle Scholar
  4. 4.
    MacDougall FW, Ennis JB, Cooper RA et al (2003) High energy density pulsed power capacitors. In: IEEE international pulsed power conference, vol 1, pp 513–517Google Scholar
  5. 5.
    Dai L, Lin F, Zhu Z et al (2005) Electrical characteristics of high energy density multilayer ceramic capacitor for pulse power application. IEEE Trans Magn 41(1):281–284CrossRefGoogle Scholar
  6. 6.
    Gorzkowski EP, Pan MJ, Bender B et al (2007) Glass-ceramics of barium strontium titanate for high energy density capacitors. J Electroceram 18(3–4):269–276CrossRefGoogle Scholar
  7. 7.
    Yang H, Liu P, Yan F et al (2019) A novel lead-free ceramic with layered structure for high energy storage applications. J Alloy Compd 773:244–249CrossRefGoogle Scholar
  8. 8.
    Feng L, Mingxing Z, Jiwei Z et al (2018) Novel barium titanate based ferroelectric relaxor ceramics with superior charge-discharge performance. J Eur Ceram Soc 38:4646–4652CrossRefGoogle Scholar
  9. 9.
    Feng L, Tao J, Jiwei Z et al (2018) Exploring novel bismuth-based material for energy storage applications. J Mater Chem C 6:7976–7981CrossRefGoogle Scholar
  10. 10.
    Hilton AD, Ricketts BW (1996) Dielectric properties of ceramics. J Phys D Appl Phys 29(5):1321–1325CrossRefGoogle Scholar
  11. 11.
    Kumar M, Garg A, Kumar R et al (2008) Structural, dielectric and ferroelectric study of Ba 0.9Sr0.1ZrxTi1−xO3 ceramics prepared by the sol–gel method. Phys B Condens Matter 403(s10–11):1819–1823CrossRefGoogle Scholar
  12. 12.
    Ricketts BW, Triani G, Hilton AD (2000) Dielectric energy storage densities in Ba1−xSrxTi1−yZryO3 ceramics. J Mater Sci: Mater Electron 11(6):513–517Google Scholar
  13. 13.
    Xu Q, Zhan D, Huang DP et al (2013) Effect of MgO–CaO–Al2O3–SiO2 glass additive on dielectric properties of Ba0.95Sr0.05Zr0.2Ti0.8O3 ceramics. J Alloy Compd 558:77–83CrossRefGoogle Scholar
  14. 14.
    Tang XG, Wang XX, Chew KH et al (2005) Relaxor behavior of (Ba, Sr)(Zr, Ti)O3 ferroelectric ceramics. Solid State Commun 136(2):89–93CrossRefGoogle Scholar
  15. 15.
    Mangaiyarkkarasi J, Sasikumar S, Saravanan OV et al (2017) Electronic structure and bonding interactions in Ba1−xSrxZr0.1Ti0.9O3 ceramics. Front Mater Sci 11(2):182–189CrossRefGoogle Scholar
  16. 16.
    Jian X, Lu B, Li D et al (2019) Enhanced electrocaloric effect in Sr2+-modified lead-free BaZrxTi1−xO3 ceramics. ACS Appl Mater Interfaces 11(22):20167–20173CrossRefGoogle Scholar
  17. 17.
    Alexandru HV, Berbecaru C, Ioachim A et al (2006) BST solid solutions, temperature evolution of the ferroelectric transitions. Appl Surf Sci 253(1):354–357CrossRefGoogle Scholar
  18. 18.
    Ho IC, Fu SL (1990) Effects of zirconium on the structural and dielectric properties of (Ba, Sr) TiO3 solid solution. J Mater Sci 25(11):4699–4703. CrossRefGoogle Scholar
  19. 19.
    Johnson KM (1962) Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J Appl Phys 33(9):2826–2831CrossRefGoogle Scholar
  20. 20.
    Placeres-Jiménez R, Rino JP, Eiras JA (2015) Modeling ferroelectric permittivity dependence on electric field and estimation of the intrinsic and extrinsic contributions. J Phys D Appl Phys 48(3):035304CrossRefGoogle Scholar
  21. 21.
    Ang C, Yu Z (1970) DC electric-field dependence of the dielectric constant in polar dielectrics: multipolarization mechanism mode l. Phys Rev B Condens Matter 69(17):1324–1332Google Scholar
  22. 22.
    Diamond H (1961) Variation of permittivity with electric field in perovskite-like ferroelectrics. J Appl Phys 32(5):909–915CrossRefGoogle Scholar
  23. 23.
    Outzourhit A, Trefny JU, Kito T et al (1995) Tunability of the dielectric constant of Ba0.1Sr0.9TiO3 ceramics in the paraelectric state. J Mater Res 10(06):1411–1417CrossRefGoogle Scholar
  24. 24.
    Li W, Zhou D, Pang L (2017) Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl Phys Lett 110:132902CrossRefGoogle Scholar
  25. 25.
    Yang H, Yan F, Lin Y, Wang T (2017) Novel strontium titanate-based lead-free ceramics for high energy storage applications. ACS Sustain Chem Eng 5:10215–10222CrossRefGoogle Scholar
  26. 26.
    Wang T, Wang YH, Yang HB et al (2018) Structure, dielectric properties of low temperature-sintering BaTiO3-based glass-ceramics for energy storage. J Adv Dielect 08(06):1850041CrossRefGoogle Scholar
  27. 27.
    Reshmi R, Asha AS, Krishnaprasad PS et al (2011) High tunability of pulsed laser deposited Ba0.7Sr0.3TiO3 thin films on perovskite oxide electrode. J Alloy Compd 509(23):6561–6566CrossRefGoogle Scholar
  28. 28.
    Neusel C, Jelitto H, Schneider GA (2015) Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown. J Appl Phys 117(15):154902CrossRefGoogle Scholar
  29. 29.
    Kao KC (2004) Dielectric phenomena in solids. Dielectric phenomena in solidsGoogle Scholar
  30. 30.
    Li R, Jiang S, Gao L et al (2012) Enhanced leakage current performance and conduction mechanisms of Bi1.5Zn1.0Nb1.5O7/Ba0.5Sr0.5TiO3 bilayered thin films. J Appl Phys 112(7):074113Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials ScienceSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations