Skip to main content
Log in

Microbial survival in the stratosphere and implications for global dispersal

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Spores of Bacillus subtilis were exposed to a series of stratosphere simulations. In total, five distinct treatments measured the effect of reduced pressure, low temperature, high desiccation, and intense ultraviolet (UV) irradiation on stratosphere-isolated and ground-isolated B. subtilis strains. Environmental conditions were based on springtime data from a mid-latitude region of the lower stratosphere (20 km). Experimentally, each treatment consisted of the following independent or combined conditions: −70°C, 56 mb, 10–12% relative humidity and 0.00421, 5.11, and 54.64 W/m2 of UVC (200–280 nm), UVB (280–315 nm), UVA (315–400 nm), respectively. Bacteria were deposited on metal coupon surfaces in monolayers of ~1 × 106 spores and prepared with palagonite (particle size < 20 μm). After 6 h of exposure to the stratosphere environment, 99.9% of B. subtilis spores were killed due to UV irradiation. In contrast, temperature, desiccation, and pressure simulations without UV had no effect on spore viability up through 96 h. There were no differences in survival between the stratosphere-isolated versus ground-isolated B. subtilis strains. Inactivation of most bacteria in our simulation indicates that the stratosphere can be a critical barrier to long-distance microbial dispersal and that survival in the upper atmosphere may be constrained by UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bates, D. R. (1984). Rayleigh scattering by air. Planetary and Space Sciences, 32(6), 785–790.

    Article  Google Scholar 

  • Benardini, J. N., Sawyer, J., Venkateswaran, K., & Nicholson, W. L. (2003). Spore UV and acceleration resistance of endolithic Bacillus pumilus and Bacillus subtilis isolates obtained from Sonoran Desert basalt: Implications for lithopanspermia. Astrobiology, 3(4), 709–717.

    Article  Google Scholar 

  • Betzer, P. R., et al. (1988). Long-range transport of giant mineral aerosol particles. Nature, 336, 568–571.

    Article  CAS  Google Scholar 

  • Blumthaler, M., Ambach, W., & Ellinger, R. (1997). Increase in solar UV radiation with altitude. Journal of Photochemistry and Photobiology, 39, 130–134.

    Article  CAS  Google Scholar 

  • Brasseur, G., & Solomon, S. (1986). Aeronomy of the middle atmosphere: Chemistry and physics of the stratosphere and mesosphere (pp. 1–30). Boston: Dordrecht.

    Google Scholar 

  • Broadwater, W. T., Hoehn, R. C., & King, P. H. (1973). Sensitivity of three selected bacterial species to ozone. Applied Microbiology, 26(3), 391–393.

    CAS  Google Scholar 

  • Carder, K. L., Steward, R. G., & Betzer, P. R. (1986). Dynamics and composition of particles from an aeolian input event to the Sargasso Sea. Journal of Geophysical Research, 91(D1), 1055–1066.

    Article  Google Scholar 

  • Daumont, D., Charbonnier, B. J., & Malicet, J. (1992). Ozone UV spectroscopy I: Absorption cross-sections at room temperature. Journal of Atmospheric Chemistry, 15, 145–155.

    Article  CAS  Google Scholar 

  • Deguillaume, L., et al. (2008). Microbiology and atmospheric processes: Chemical interactions of primary biological aerosols. Biogeosciences Discussions, 5, 841–870.

    Article  Google Scholar 

  • Dehel, T., Lorge, F., & Dickinson, M. (2008). Uplift of microorganisms by electric fields above thunderstorms. Journal of Electrostatics, 66, 463–466.

    Article  Google Scholar 

  • Dessler, A. (2000). The chemistry and physics of stratospheric ozone (pp. 1–16). San Diego: Academic Press. 117–126.

    Google Scholar 

  • Diaz, B., & Schulze-Makuch, D. (2006). Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-irradiation conditions, and their relevance to possible martian life. Astrobiology, 6(2), 332–347.

    Article  CAS  Google Scholar 

  • Dose, K., & Klein, A. (1996). Response of Bacillus subtilis spores to dehydration and UV irradiation at extremely low temperatures. Origins of Life and Evolution of the Biosphere, 26, 47–59.

    Article  CAS  Google Scholar 

  • Dose, K., et al. (2001). Survival of microorganisms under the extreme conditions of the Atacama Desert. Origins of Life and Evolution of the Biosphere, 31, 287–303.

    Article  CAS  Google Scholar 

  • Fajardo-Cavazos, P., & Nicholson, W. (2006). Bacillus endospores isolated from granite: Close molecular relationships to globally distributed Bacillus spp. from endolithic and extreme environments. Applied and Environmental Microbiology, 72(4), 2856–2863.

    Article  CAS  Google Scholar 

  • Ghosal, D., et al. (2005). How radiation kills cells: Survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiology Reviews, 29, 361–375.

    CAS  Google Scholar 

  • Gierens, K., Schumann, U., Helten, M., Smit, H., & Marenco, A. (1999). A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements. Annals of Geophysicae, 17, 1218–1226.

    Article  CAS  Google Scholar 

  • Griffin, D. W. (2004). Terrestrial microorganisms at an altitude of 20,000 m in earth’s atmosphere. Aerobiologia, 20, 135–140.

    Article  Google Scholar 

  • Griffin, D. W. (2008). Non-spore forming eubacteria isolated at an altitude of 20, 000 m in Earth’s atmosphere: Extended incubation periods needed for culture-based assays. Aerobiologia, 24, 19–25.

    Article  Google Scholar 

  • Griffin, D. W. (2010). Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments. Aerobiologia. doi:10.1007/s10453-010-9173-z.

  • Harris, M. J., Wickramasinghe, N. C., Lloyd, D., Narlikar, J. V., Rajaratnam, P., Turner, M. P., et al. (2002). The detection of living cells in stratospheric samples. Proceedings of the Society of Photographic Instrumentation Engineers, 4495, 192–198.

    Google Scholar 

  • Horneck, G. (1993). Responses of Bacillus subtilis spores to the space environment: results from experiments in space. Origins of Life and Evolution of the Biosphere, 23, 37–52.

    Article  CAS  Google Scholar 

  • Horneck, G., Bücker, H., & Reitz, G. (1994). Long-term survival of bacterial spores in space. Advances in Space Research, 14, 41–45.

    Article  CAS  Google Scholar 

  • Imshenetsky, A. A., Lysenko, S. V., & Kasakov, G. A. (1978). Upper boundary of the biosphere. Applied and Environmental Microbiology, 35(1), 1–5.

    CAS  Google Scholar 

  • Imshenetsky, A. A., Lysenko, S. V., Kasakov, G. A., & Ramkova, N. V. (1977). Resistance of stratospheric and mesospheric micro-organisms to extreme factors. Life Sciences and Space Research, 15, 37–52.

    CAS  Google Scholar 

  • Imshenetsky, A. A., Lysenko, S. V., & Lach, S. P. (1979). Microorganisms of the upper layer of the atmosphere and the protective role of their cell pigments. Life Sciences and Space Research, 17, 105–110.

    CAS  Google Scholar 

  • Jacob, D. J. (1999). Introduction to atmospheric chemistry (pp. 1–23). Princeton: Princeton University Press. 42–71, 146–154.

    Google Scholar 

  • Junge, K., Eicken, H., Swanson, B. D., & Deming, J. W. (2006). Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology, 52, 417–429.

    Article  CAS  Google Scholar 

  • Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21(11), 638–644.

    Article  Google Scholar 

  • Komanapalli, I. R., & Lau, B. H. S. (1998). Inactivation of bacteriophage λ, Escherichia coli, and Candida albicans by ozone. Applied Microbiology and Biotechnology, 49, 766–769.

    Article  CAS  Google Scholar 

  • Kondratyev, K. Y., Ivlev, L. S., Krapivin, V. F., & Varotsos, C. A. (Eds.). (2006). Atmospheric aerosol properties: Formation, processes and impacts (pp. 212–218). Chichester: Praxis Publishing, Ltd. 380, 425–448.

    Google Scholar 

  • Lysenko, S. V. (1980). Resistance of microorganisms of upper layers of the atmosphere to ultraviolet radiation and a high vacuum. Mikrobiologiia, 49(1), 175–177.

    CAS  Google Scholar 

  • Malicet, J., Daumont, D., Charbonnier, J., Parisse, C., Chakir, A., & Brion, J. (1995). Ozone UV spectroscopy II: Absorption cross-sections and temperature dependence. Journal of Atmospheric Chemistry, 21, 263–273.

    Article  CAS  Google Scholar 

  • Mancinelli, R. L., & Klovstad, M. (2000). Martian soil and UV radiation: Microbial viability assessment on spacecraft surfaces. Planetary and Space Sciences, 48, 1093–1097.

    Article  Google Scholar 

  • Martiny, J. B. H., et al. (2006). Microbial biogeography: Putting microorganisms on the map. Nature, 4, 102–112.

    CAS  Google Scholar 

  • McPeters, R. D., Heath, D. F., & Bhartia, P. K. (1984). Average ozone profiles for 1979 from the Nimbus-7 SBUV instrument. Journal of Geophysical Research, 89(4), 5199–5214.

    Article  CAS  Google Scholar 

  • McPeters, R. D., Krueger, A. J., Bhartia, P. K., Herman, J. R., Oakes, A., Ahmad, Z., et al. (1993). Nimbus-7 total ozone mapping spectrometer (TOMS) data products user’s guide. NASA reference publication 1323. Washington, DC: National Aeronautics and Space Administration.

    Google Scholar 

  • McPeters, R. D., Labow, G. J., & Logan, J. A. (2007). Ozone climatological profiles for satellite retrieval algorithms. Journal of Geophysical Research, 112, D05308.

    Article  Google Scholar 

  • Miyamoto-Shinohara, Y., Sukenobe, J., Imaizumi, T., & Nakahara, T. (2006). Survival curves for microbial species stored by freeze-drying. Cryobiology, 52, 27–32.

    Article  Google Scholar 

  • Narlikar, J. V., Lloyd, D., Wickramasinghe, N. C., Harris, M. J., Turner, M. P., Al-Mufti, S., et al. (2003). A balloon experiment to detect microorganisms in the outer space. Astrophysics and Space Science, 285(2), 555–562.

    Article  Google Scholar 

  • Nicholson, W. L., & Fajardo-Cavazos, P. (1997). DNA repair and the ultraviolet radiation resistance of bacterial spores: From the laboratory to the environment. Recent Research and Developments in Microbiology, 1, 125–140.

    Google Scholar 

  • Nicholson, W. L., & Law, J. F. (1999). Method for purification of bacterial endospores from soils: UV resistance of natural Sonoran Desert soil populations of Bacillus spp. with reference to B. subtilis strain 168. Journal of Microbiology Methods, 35, 13–21.

    Article  CAS  Google Scholar 

  • Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64(3), 548–572.

    Article  CAS  Google Scholar 

  • Nicholson, W. L., et al. (2002). Bacterial endospores and their significance in stress resistance. Antonie van Leeuwenhoek, 81, 27–32.

    Article  CAS  Google Scholar 

  • Osman, S., et al. (2008). Effect of shadowing on survival of bacteria under conditions simulating the martian atmosphere and UV radiation. Applied and Environmental Microbiology, 74(4), 959–970.

    Article  CAS  Google Scholar 

  • Papke, R. T., & Ward, D. M. (2004). The importance of physical isolation to microbial diversification. FEMS Microbiological Ecology, 48, 293–303.

    Article  CAS  Google Scholar 

  • Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K. A., et al. (2010). Asian monsoon transport of pollution to the stratosphere. Science, 238, 611–613.

    Article  Google Scholar 

  • Riesenman, P. J., & Nicholson, W. L. (2000). Role of spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Applied and Environmental Microbiology, 66(2), 620–626.

    Article  CAS  Google Scholar 

  • Saffary, R., et al. (2002). Microbial survival of space vacuum and extreme ultraviolet irradiation: Strain isolation and analysis during a rocket flight. FEMS Microbiology Letters, 215, 163–168.

    Article  CAS  Google Scholar 

  • Schmucki, D. A., & Philipona, R. (2002). Ultraviolet radiation in the Alps: The altitude effect. Optical Engineering, 41(12), 3090–3095.

    Article  Google Scholar 

  • Schuerger, A. C., Fajardo-Cavazos, P., Clausen, C. A., Moores, J. E., Smith, P. H., & Nicholson, W. L. (2008). Slow degradation of ATP in simulated martian environments suggests long residence times for the biosignature molecule on spacecraft surfaces on mars. Icarus, 194, 86–100.

    Article  CAS  Google Scholar 

  • Schuerger, A. C., Mancinelli, R. L., Kern, R. G., Rothschild, L. J., & McKay, C. P. (2003). Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: Implications for the forward contamination of Mars. Icarus, 165, 253–376.

    Article  CAS  Google Scholar 

  • Schuerger, A. C., Richards, J. T., Newcombe, D. A., & Venkateswaran, K. (2006). Rapid inactivation of seven Bacillus spp. under simulated mars UV irradiation. Icarus, 181, 52–62.

    Article  Google Scholar 

  • Setlow, P. (1995). Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annual Reviews in Microbiology, 49, 29–54.

    Article  CAS  Google Scholar 

  • Setlow, P. (2001). Resistance of spores of Bacillus species to ultraviolet light. Environmental and Molecular Mutagenesis, 38, 97–104.

    Article  CAS  Google Scholar 

  • Setlow, P. (2007). I will survive: DNA protection in bacterial spores. Trends in Microbiology, 15(4), 172–180.

    Article  CAS  Google Scholar 

  • Shivaji, S., Chaturvedi, P., Begum, Z., Pindi, P. K., Manorama, R., Padmanaban, D. A., et al. (2009). Isolation of three novel bacterial strains, Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov. from cryotubes used for collecting air from upper atmosphere. International Journal of Systematic Evolution in Microbiology. doi:10.1099/ijs.0.002527-0.

  • Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G. S. N., Dutt, C. B. S., Wainwright, M., et al. (2006). Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. International Journal of Systematic and Evolutionary Microbiology, 56, 1465–1473.

    Article  CAS  Google Scholar 

  • Slieman, T. A., & Nicholson, W. L. (2000). Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimmers in Bacillus subtilis spore DNA. Applied and Environmental Microbiology, 66(1), 199–205.

    Article  CAS  Google Scholar 

  • Slieman, T. A., & Nicholson, W. L. (2001). Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation. Applied and Environmental Microbiology, 67(3), 1274–1279.

    Article  CAS  Google Scholar 

  • Smith, D. J., Griffin, D. W., & Schuerger, A. C. (2009). Stratospheric microbiology at 20 km over the Pacific Ocean. Aerobiologia, 26, 35–46.

    Article  Google Scholar 

  • Wainwright, M., Alharbi, S., & Wickramasinghe, N. C. (2006). How do microorganisms reach the stratosphere? International Journal of Astrobiology, 5(1), 13–15.

    Article  CAS  Google Scholar 

  • Wainwright, M., Wickramasinghe, N. C., Narlikar, J. V., & Rajaratnam, P. (2002). Microorganisms culture from stratospheric air samples obtained at 41 km. FEMS Microbiology Letters, 10778, 1–5.

    Google Scholar 

  • Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric science: An introductory survey (2nd ed., pp. 1–21). New York: Academic Press. 113–198, 441–443.

    Google Scholar 

  • Xue, Y., & Nicholson, W. L. (1996). The two major spore DNA repair pathways, nucleotide excision repair and spore photoproduct lyase, are sufficient for the resistance of Bacillus subtilis spores to artificial UV-C and UV-B but not to solar radiation. Applied and Environmental Microbiology, 62(7), 2221–2227.

    CAS  Google Scholar 

  • Yang, Y., Itahashi, S., Yokobori, S., & Yamagishi, A. (2008a). UV-resistant bacteria isolated from upper troposphere and lower stratosphere. Biological Science in Space, 22, 18–25.

    Article  Google Scholar 

  • Yang, Y., Yokobori, S., Kawaguchi, J., Yamagami, T., Iijima, I., Izutsu, N., et al. (2008b). Investigation of cultivable microorganisms in the stratosphere collected by using a balloon in 2005. JAXA Research and Development Report, JAXA-RR-08-001, 35–42.

Download references

Acknowledgments

Our research was supported by the National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) program at the University of Washington Graduate Program in Astrobiology, and the Cooperative Education Program at NASA Kennedy Space Center (KSC). Critical resources came from the U.S. Geological Survey (USGS), NASA Goddard Space Flight Center and the University of Florida. The authors are grateful to Paul Hintze (NASA KSC) for his assistance with SEM imaging and energy-dispersive X-ray spectrometry and to Phillip Metzger and Luke Roberson (NASA KSC) who helped generate the dust analog. We also acknowledge John Frederick (University of Chicago) for guidance during our research. Any use of trade names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.J., Griffin, D.W., McPeters, R.D. et al. Microbial survival in the stratosphere and implications for global dispersal. Aerobiologia 27, 319–332 (2011). https://doi.org/10.1007/s10453-011-9203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-011-9203-5

Keywords

Navigation