Skip to main content
Log in

Effect of ibuprofen on proliferation, differentiation, antigenic expression, and phagocytic capacity of osteoblasts

  • Original article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Ibuprofen is a nonselective nonsteroidal antiinflammatory drug commonly prescribed for acute postsurgical and posttraumatic pain. However, little known is about the effect of this drug on osteoblasts. In this study, we aimed to investigate the effect of ibuprofen on cell proliferation, differentiation, antigenic profile, and phagocytic activity, in a human MG-63 osteosarcoma cell line, as a model of osteoblasts. Flow cytometry was used to study proliferation, antigenic profile, and phagocytic activity, and radioimmunoassay was used to determine osteocalcin synthesis as a cell differentiation marker. Our results showed that therapeutic doses of ibuprofen (5 and 25 μM) did not modify cell proliferation and osteocalcin synthesis in the MG-63 cellular line. However, treatment with a higher dose (25 μM) increased the expression of antigens CD21, CD44, CD80, CD86, and HLA-DR and decreased phagocytic activity. The results indicate that a therapeutic dose of ibuprofen has no adverse effects on growth of the osteoblast-like cells. Treatment with ibuprofen alone may produce some cell activation, which would explain the increase in expression of membrane markers and decrease in phagocytic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smith WL, Dewitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    Article  PubMed  CAS  Google Scholar 

  2. Beck A, Krischak G, Sorg T, Augat P, Farker K, Merkel U, Kinzl L, Claes L (2003) Influence of diclofenac (group of nonsteroidal anti-inflammatory drugs) on fracture healing. Arch Orthop Trauma Surg 123:327–332

    Article  PubMed  CAS  Google Scholar 

  3. Gerstenfeld LC, Thiede M, Seibert K, Mielke C, Phippard D, Svagr B, Cullinane D, Einhorn TA (2003) Differential inhibition of fracture healing by non-selective and cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs. J Orthop Res 21:70–75

    Article  Google Scholar 

  4. Evans CE, Butcher C (2004) The influence on human osteoblasts in vitro of nonsteroidal anti-inflammatory drugs which act on different cyclooxygenase enzymes. J Bone Joint Surg Br 86:444–449

    Article  PubMed  CAS  Google Scholar 

  5. Naruse T, Nishida Y, Hosono K, Ishiguro N (2006) Meloxicam inhibits osteosarcoma growth, invasiveness and metastasis by COX-2-dependent and independent routes. Carcinogenesis (Oxf) 27:584–592

    Article  CAS  Google Scholar 

  6. Krischak GD, Augat P, Blakytny R, Claes L, Kinzl L, Beck A (2007) The non-steroidal anti-inflammatory drug diclofenac reduces appearance of osteoblasts in bone defect healing in rats. Arch Orthop Trauma Surg 127:453–458

    Article  PubMed  CAS  Google Scholar 

  7. Díaz-Rodríguez L, García-Martínez O, Arroyo-Morales M, Rodríguez-Pérez L, Rubio-Ruiz B, Ruiz C (2012) Effects of indomethacin, nimesulide, and diclofenac on human MG-63 osteosarcoma cell line. Biol Res Nurs 14:98–107

    Article  PubMed  Google Scholar 

  8. García-Martínez O, Díaz-Rodríguez L, De Luna-Bertos E, Reyes-Botella C, Ruiz C (2011) Effect of acetaminophen, ibuprofen and methylprednisolone on different parameters of human osteoblast-like cells. Arch Oral Biol 6:317–323

    Article  Google Scholar 

  9. Chang JK, Wang GJ, Tsai ST, Ho ML (2005) Nonsteroidal anti-inflammatory drug effects on osteoblastic cell cycle, cytotoxicity and cell death. Connect Tissue Res 46:200–210

    Article  PubMed  CAS  Google Scholar 

  10. Chang JK, Li CJ, Liao HJ, Wang CK, Wang GJ, Ho ML (2009) Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts. Toxicology 258:148–156

    Article  PubMed  CAS  Google Scholar 

  11. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van de Puete LBA, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073

    PubMed  CAS  Google Scholar 

  12. Reyes-Botella C, Montes MJ, Vallecillo-Capilla MF, Olivares EG, Ruiz C (2000) Expression of molecules involved in antigen presentation and T cell activation (HLA-DR, CD80, CD86, CD44 and CD54) by cultured human osteoblasts. J Periodontol 71:614–617

    Article  PubMed  CAS  Google Scholar 

  13. Reyes-Botella C, Montes MJ, Vallecillo-Capilla MF, Olivares EG, Ruiz C (2002) Antigenic phenotype of cultured human osteoblast-like cells. Cell Physiol Biochem 12:359–364

    Article  PubMed  CAS  Google Scholar 

  14. Ruiz C, Pérez E, Vallecillo-Capilla MF, Reyes-Botella C (2003) Phagocytosis and allogeneic T cell stimulation by cultured human osteoblastic-like cells. Cell Physiol Biochem 13:309–314

    Article  PubMed  CAS  Google Scholar 

  15. Schrum LW, Bost KL, Hudson MC, Marriott I (2003) Bacterial infection induces expression of functional MHC class II molecules in murine and human osteoblasts. Bone (NY) 33:812–821

    CAS  Google Scholar 

  16. Pérez E, García-Martínez O, Arroyo-Morales M, Reyes-Botella C, Ruiz C (2006) Modulation of antigenic phenotype in cultured human osteoblast-like cells by FGFb, TGFβ1, PDGF-BB, IL-2, IL-1β, LPS and IFNγ. Biosci Rep 26:281–289

    Article  PubMed  Google Scholar 

  17. Stanley KT, Vandort C, Motyl C, Endres J, Fox DA (2006) Immunocompetent properties of human osteoblasts: interactions with T lymphocytes. J Bone Miner Res 21:29–36

    Article  PubMed  CAS  Google Scholar 

  18. García-Martínez O, Reyes-Botella C, Aguilera-Castillo O, Vallecillo-Capilla MF, Ruiz C (2006) Antigenic profile of osteoblasts present in human bone tissue sections. Biosci Rep 26:39–43

    Article  PubMed  Google Scholar 

  19. Díaz-Rodríguez L, García-Martínez O, Arroyo-Morales M, Reyes-Botella C, Ruiz C (2009) Antigenic phenotype and phagocytic capacity of MG63 osteosarcoma line. Ann N Y Acad Sci 1173(suppl 1):E46–E54

    Article  Google Scholar 

  20. Prouillet C, Mazičre JC, Mazičre C, Wattel A, Brazier M, Kamel S (2004) Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 67:1307–1313

    Article  PubMed  CAS  Google Scholar 

  21. Nayab SN, Jones FH, Olsen I (2005) Effects of calcium ion implantation on human bone cell interaction with titanium. Biomaterials 26:4717–4727

    Article  PubMed  CAS  Google Scholar 

  22. García-Martínez O, Reyes-Botella C, Díaz-Rodríguez L, De Luna-Bertos E, Ramos-Torrecillas J, Vallecillo-Capilla MF, Ruiz C (2011) Effect of platelet-rich plasma on growth and antigenic profile of human osteoblasts and its clinical impact. J Oral Maxillofac Surg. doi:10.1016/j.joms.2011.06.199

  23. Vuolteenaho K, Moilanen T, Moilanen E (2008) Non-steroidal anti-inflammatory drugs, cyclooxygenase-2 and the bone healing process. Basic Clin Pharmacol Toxicol 102:10–14

    PubMed  CAS  Google Scholar 

  24. Akman S, Gögüs A, Sener N, Bilgiç B, Aksov B, Seckin F (2002) Effect of diclofenac sodium on union of tibial fractures in rat. Adv Ther 19:119–125

    Article  PubMed  CAS  Google Scholar 

  25. Mullis BH, Copland ST, Weinhold PS, Miclau T, Lester GE, Bos DG (2006) Effect of COX-2 inhibitors and non-steroidal anti-inflammatory drugs on a mouse fracture model. Injury 37:827–837

    Article  PubMed  Google Scholar 

  26. Salari P, Abdollahi M (2009) Controversial effects of non-steroidal anti-inflammatory drugs on bone: a review. Inflamm Allergy Drug Targets 8:169–175

    Article  PubMed  CAS  Google Scholar 

  27. Abukawa H, Phelps M, Jackson P, Smith M, Vacanti JP, Kaban LB, Troulis MJ (2009) Effect of ibuprofen on osteoblast differentiation of porcine bone marrow-derived progenitor cells. J Oral Maxillofac Surg 67:2412–2417

    Article  PubMed  Google Scholar 

  28. Raisz LG, Pilbeam CC, Fall PM (1993) Prostaglandins: mechanisms of action and regulation in bone. Osteoporos Int 3(suppl 1):136–140

    Google Scholar 

  29. Ruiz C, Pérez E, García-Martínez O, Díaz-Rodríguez L, Arroyo-Morales M, Reyes-Botella C (2007) Expression of cytokines IL-4, IL-12, IL-15, IL-18, and IFNγ and modulation by different growth factors in cultured human osteoblast-like cells. J Bone Miner Metab 25:286–292

    Article  PubMed  CAS  Google Scholar 

  30. Andreae S, Piras F, Burdin N, Triebel F (2002) Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). J Immunol 168:3874–3880

    PubMed  CAS  Google Scholar 

  31. Díaz-Rodríguez L, García-Martínez O, Arroyo-Morales M, Rubio-Ruiz B, Ruiz C (2010) Effect of paracetamol on human MG63 osteosarcoma cellular line. Acta Pharmacol Sin 31:1495–1499

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research group BIO277 (Junta de Andalucía) and by the Department of Nursing of the Faculty of Health Sciences of the University of Granada.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Díaz-Rodríguez.

About this article

Cite this article

Díaz-Rodríguez, L., García-Martínez, O., De Luna-Bertos, E. et al. Effect of ibuprofen on proliferation, differentiation, antigenic expression, and phagocytic capacity of osteoblasts. J Bone Miner Metab 30, 554–560 (2012). https://doi.org/10.1007/s00774-012-0356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-012-0356-2

Keywords

Navigation