Skip to main content

Advertisement

Log in

Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentata

  • Global change ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Resource limitations, such as the availability of soil nitrogen (N), are expected to constrain continued increases in plant productivity under elevated atmospheric carbon dioxide (CO2). One potential but under-studied N source for supporting increased plant growth under elevated CO2 is soil organic N. In arid ecosystems, there have been no studies examining plant organic N uptake to date. To assess the potential effects of elevated atmospheric CO2 on plant N uptake dynamics, we quantified plant uptake of organic and inorganic N forms in the dominant desert shrub Larrea tridentata under controlled environmental conditions. Seedlings of L. tridentata were grown in the Mojave Desert (NV, USA) soils that had been continuously exposed to ambient or elevated atmospheric CO2 for 8 years at the Nevada Desert FACE Facility. After 6 months of growth in environmentally controlled chambers under ambient (380 μmol mol−1) or elevated (600 μmol mol−1) CO2, pots were injected with stable isotopically labeled sole-N sources (13C-[2]-15N glycine, 15NH4 +, or 15NO3 ) and moved back to their respective chambers for the remainder of the study. Plants were destructively harvested at 0, 2, 10, 24, and 49 days. Plant uptake of soil N derived from glycine, NH4 +, and NO3 increased under elevated CO2 at days 2 and 10. Further, root uptake of organic N as glycine occurred as intact amino acid within the first hour after N treatment, indicated by ~1:1 M enrichment ratios of 13C:15N. Plant N uptake responses to elevated CO2 are often species-specific and could potentially shift competitive interactions between co-occurring species. Thus, physiological changes in root N uptake dynamics coupled with previously observed changes in the availability of soil N resources could impact plant community structure as well as ecosystem nutrient cycling under increasing atmospheric CO2 levels in the Mojave Desert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amashukeli X, Pelletier CC, Kirby JP, Grunthaner FJ (2007) Subcritical water extraction of amino acids from Atacama Desert soils. J Geophys Res G Biogeosci 112:G04S16

    Article  CAS  Google Scholar 

  • Atkin OK (1996) Reassessing the nitrogen relations of Arctic plants: a mini-review. Plant Cell Environ 19:695–704

    Article  Google Scholar 

  • Bailey J (1999) Varying the ratio of 15N-labelled ammonium and nitrate-N supplied to creeping bent: effects on nitrogen absorption and assimilation, and plant growth. New Phytol 143:503–512

    Article  Google Scholar 

  • Bardgett RD, Streeter TC, Bol R (2003) Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84:1277–1287

    Article  Google Scholar 

  • Barker DH, Vanier C, Naumberg E, Charlet TN, Nielsen KM, Newingham BA, Smith SD (2006) Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentata. New Phytol 169:799–808

    Article  CAS  PubMed  Google Scholar 

  • BassiriRad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169

    Article  CAS  Google Scholar 

  • BassiriRad H, Reynolds JF, Virginia RA, Brunelle MH (1997) Growth and root NO3 and PO4 3− uptake capacity of three desert species in response to atmospheric CO2 enrichment. Aust J Plant Physiol 24:353–358

    Article  Google Scholar 

  • BassiriRad H, Tremmel DC, Virginia RA, Reynolds JF, deSoyza AG, Brunell MH (1999) Short-term patterns in water and nitrogen acquisition by two desert shrubs following a simulated summer rain. Plant Ecol 15:27–36

    Article  Google Scholar 

  • BassiriRad H, Gutschick VP, Lussenhop J (2001) Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia 126:305–320

    Article  Google Scholar 

  • Berntson GM, Bazzaz FA (1998) Regenerating temperate forest mesocosms in elevated CO2: belowground growth and nitrogen cycling. Oecologia 113:115–125

    Article  Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2002) Trace N gas losses and N mineralization in Mojave Desert soils exposed to elevated CO2. Soil Biol Biochem 34:1777–1784

    Article  CAS  Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2004) Soil microbial activity and N availability with elevated CO2 in Mojave Desert soils. Global Biogeochem Cycles 18:GB1011. doi:10.1029/2003GB002137

    Article  CAS  Google Scholar 

  • Brisson J, Reynolds JF (1997) Effects of compensatory growth on population processes: a simulation study. Ecology 78:2378–2384

    Google Scholar 

  • Chapin FS III (1980) The mineral nutrient of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chapin FS III, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153

    Article  CAS  Google Scholar 

  • Constable JVH, BassiriRad H, Jussenhop J, Zerihun A (2001) Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Tree Physiol 21:83–91

    CAS  PubMed  Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126

    Article  CAS  PubMed  Google Scholar 

  • Finzi AC, Berthrong ST (2005) The uptake of amino acids by microbes and trees in three cold-temperate forests. Ecology 86:3345–3353

    Article  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci USA 104:14014–14019

    Article  CAS  PubMed  Google Scholar 

  • Gallardo A, Schlesinger WH (1992) Carbon and nitrogen limitations of soil microbial biomass in desert ecosystems. Biogeochemistry 18:1–17

    Article  CAS  Google Scholar 

  • Hamerlynck EP, Huxman TE, McAuliffe JR, Smith SD (2004) Carbon isotope discrimination and foliar nutrient status of Larrea tridentata (creosote bush) in contrasting Mojave Desert soils. Oecologia 138:210–215

    Article  PubMed  Google Scholar 

  • Hartle RT, Fernandez GCJ, Nowak RS (2006) Horizontal and vertical zones of influence for root systems of four Mojave Desert shrubs. J Arid Environ 64:586–603

    Article  Google Scholar 

  • Henry HAL, Jeffries RL (2003) Interactions in the uptake of amino acids, ammonium and nitrate ions in the Arctic salt-marsh grass, Puccinellia phryganodes. Plant Cell Environ 26:419–428

    Article  CAS  Google Scholar 

  • Hofmockel KS, Schlesinger WH, Jackson RB (2007) Effects of elevated atmospheric carbon dioxide on amino acid and NH4 +–N cycling in a temperate pine ecosystem. Glob Chang Biol 13:1950–1959

    Article  Google Scholar 

  • Housman DC, Zitzer SF, Huxman TE, Smith SD (2003) Functional ecology of shrub seedlings after a natural recruitment event at the Nevada Desert FACE Facility. Glob Chang Biol 9:718–728

    Article  Google Scholar 

  • Housman DC, Naumburg E, Huxman TE, Charlet TN, Nowak RS, Smith SD (2006) Increases in desert shrub productivity under elevated carbon dioxide vary with water availability. Ecosystems 9:374–385

    Article  Google Scholar 

  • Huxman KA, Smith SD, Neuman DS (1999) Root hydraulic conductivity of Larrea tridentata and Helianthus annuus under elevated CO2. Plant Cell Environ 22:325–333

    Article  Google Scholar 

  • Jin VL, Evans RD (2007) Elevated CO2 increases microbial carbon substrate use and N cycling in Mojave Desert soils. Glob Chang Biol 13:452–465

    Article  Google Scholar 

  • Jones DL, Darrah PR (1994) Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163:1–12

    CAS  Google Scholar 

  • Jones DL, Shannon D, Murphy DV, Farrar J (2004) Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem 36:749–756

    Article  CAS  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005a) Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–423

    Article  CAS  Google Scholar 

  • Jones DL, Shannon D, Junvee-Fortune T, Farrar JF (2005b) Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol Biochem 37:179–181

    Article  CAS  Google Scholar 

  • Jordan DN, Zitzer SF, Hendry GR, Lewin KF, Nagy J, Nowak RS, Smith SD, Coleman JS, Seeman JR (1999) Biotic, abiotic and performance aspects of the Nevada Desert free-air CO2 enrichment (FACE) facility. Glob Chang Biol 5:659–668

    Article  Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383

    Article  Google Scholar 

  • Kielland K, McFarland J, Olson K (2006) Amino acid uptake in deciduous and coniferous taiga ecosystems. Plant Soil 288:297–307

    Article  CAS  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Article  Google Scholar 

  • Lipson DA, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316

    Article  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71

    Article  CAS  PubMed  Google Scholar 

  • Mikan CF, Zak DR, Kubiske ME, Pregitzer KS (2000) Combined effects of atmospheric CO2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124:432–445

    Article  Google Scholar 

  • Nadeau JA, Qualls RG, Nowak RS, Blank RR (2007) The potential bioavailability of organic C, N, and P through enzyme hydrolysis in soils of the Mojave Desert. Biogeochemistry 82:305–320

    Article  CAS  Google Scholar 

  • Näsholm T, Persson J (2001) Plant acquisition of organic nitrogen in boreal forests. Physiol Plant 111:419–426

    Article  PubMed  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Näsholm T, Huss-Danell K, Högberg P (2000) Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81:1155–1161

    Google Scholar 

  • Noble IR, Gitay H, Alwelaie AN, Hoffman MT, Saunders AR (1996) Deserts in a changing climate: impacts. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Contribution of working group II to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 159–169

    Google Scholar 

  • Norby RJ (1994) Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant Soil 165:9–20

    Article  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  Google Scholar 

  • Nordin A, Högberg P, Näsholm T (2001) Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129:125–132

    Article  Google Scholar 

  • Persson J, Högberg P, Ekblad A, Högberg M, Nordgren A, Näsholm T (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137:252–257

    Article  PubMed  Google Scholar 

  • Phillips DL, Johnson MG, Tingey DT, Catricala CE, Hoyman TL, Nowak RS (2006) Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: a FACE study. Glob Chang Biol 12:61–73

    Article  Google Scholar 

  • Polley HW, Johnson HB, Mayeux HS, Tischler CR, Brown DA (1996) Carbon dioxide enrichment improves growth, water relations and survival of droughted honey mesquite (Prosopis glandulosa) seedlings. Tree Physiol 18:817–823

    Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1999) Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 80:2408–2419

    Article  Google Scholar 

  • Reynolds JF, Virginia RA, Schlesinger WH (1996) Defining functional types for models of desertification. In: Smith TM, Shugart HH, Woodward FI (eds) Functional types. Cambridge University Press, Cambridge, pp 194–214

    Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Article  PubMed  Google Scholar 

  • Schaeffer SM, Billings SA, Evans RD (2007) Laboratory incubations reveal potential responses of soil nitrogen cycling to changes in soil C and N availability in Mojave Desert soils exposed to elevated atmospheric CO2. Glob Chang Biol 13:854–865

    Google Scholar 

  • Schimel JA, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schimel JA, Chapin FS III (1996) Tundra plant uptake of amino acid and NH4 + nitrogen in situ: plants compete well for amino acid N. Ecology 77:2142–2147

    Article  Google Scholar 

  • Schlesinger WH, Raikes JF, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374

    Article  Google Scholar 

  • Schmidt S, Stewart GR (1997) Waterlogging and fire impact on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Environ 20:1231–1241

    Article  Google Scholar 

  • Senwo ZN, Tabatabai MA (1998) Amino acid composition of soil organic matter. Biol Fertil Soils 26:235–242

    Article  CAS  Google Scholar 

  • Smith SD, Monson RK, Anderson JE (1997) Physiological ecology of North American desert plants. Springer, Berlin

    Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK et al (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    Article  CAS  Google Scholar 

  • Thompson TL, Zaady E, Huancheng P, Wilson TB, Martens DA (2006) Soil C and N pools in patchy shrublands of the Negev and Chihuahan Deserts. Soil Biol Biochem 38:1943–1955

    Article  CAS  Google Scholar 

  • Titus JH, Nowak RS, Smith SD (2002) Soil resource heterogeneity in the Mojave Desert. J Arid Environ 52:269–292

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation (NSF-DEB-0424979, NSF-MRI-0421478 to RDE). Additional research and operational support was provided by the U. S. Department of Energy’s Terrestrial Carbon Processes program (Award DE-FG02-03ER63651). The authors thank B. Harlow, A. Koyama, S. Schaeffer, J. Briggs, J. Schneider, and A. Cho for laboratory/field assistance, and R. Alldredge for statistical consulting. The research conducted here is in compliance with regulations set forth by Washington State University, the NDFF, and the U.S. Department of Energy. This manuscript was greatly improved by the excellent comments from Z. Cardon and three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia L. Jin.

Additional information

Communicated by Zoe Cardon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, V.L., Evans, R.D. Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentata . Oecologia 163, 257–266 (2010). https://doi.org/10.1007/s00442-010-1562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1562-z

Keywords

Navigation