Skip to main content
Log in

PCR technology for screening and quantification of genetically modified organisms (GMOs)

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why it has been the first choice of most analytical laboratories interested in detection of genetically modified (GM) organisms (GMOs) and derived materials. Because the products that laboratories receive for analysis are often processed and refined, the quality and quantity of target analyte (e.g. protein or DNA) frequently challenges the sensitivity of any detection method. Among the currently available methods, PCR methods are generally accepted as the most sensitive and reliable methods for detection of GM-derived material in routine applications.

The choice of target sequence motif is the single most important factor controlling the specificity of the PCR method. The target sequence is normally a part of the modified gene construct, for example a promoter, a terminator, a gene, or a junction between two of these elements. However, the elements may originate from wildtype organisms, they may be present in more than one GMO, and their copy number may also vary from one GMO to another. They may even be combined in a similar way in more than one GMO. Thus, the choice of method should fit the purpose. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content.

Thresholds for labelling are now in place in many countries including those in the European Union. The success of the labelling schemes is dependent upon the efficiency with which GM-derived material can be detected. We will present an overview of currently available PCR methods for screening and quantification of GM-derived DNA, and discuss their applicability and limitations. In addition, we will discuss some of the major challenges related to determination of the limits of detection (LOD) and quantification (LOQ), and to validation of methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Kleppe K, Ohtsuka E, Kleppe R, Molineux I, Khorana HG (1971) J Mol Biol 56:341–361

    CAS  PubMed  Google Scholar 

  2. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Science 239:487–491

    PubMed  Google Scholar 

  3. Institute of Reference Materials and Measurements (IRMM), European Commission, Joint Research Centre, Geel, Belgium (2002) http://www.irmm.jrc.be/. Cited 12 Sept 2002

  4. Agriculture and Biotechnology Strategies Canada inc (2002) GMO database. http://www.agbios.com. Cited 12 Sept 2002

  5. Wolf C, Scherzinger M, Wurz A, Pauli U, Hübner P, Lüthy J (2000) Eur Food Res Technol 210:367–372

    CAS  Google Scholar 

  6. Hemmer W (1997) BATS-report 2/97. BATS, Basel, Switzerland

  7. Commission Regulation 49/2000 EC (2000) Off J Europ Com-11.1.2000-No L 6, P. 0013–0014

  8. Berdal KG, Holst-Jensen A (2001) Eur Food Res Technol 213:432–438

    CAS  Google Scholar 

  9. European Committee for Normalisation (CEN), Technical Committee 275, Working group 11, internal working documents

  10. Studer E, Rhyner C, Lüthy J, Hübner P (1998) Z Lebensm Unters Forsch 207:207–213

    Article  CAS  Google Scholar 

  11. Hardegger M, Brodmann P, Herrmann A (1999) Eur Food Res Technol 209:83–87

    Article  CAS  Google Scholar 

  12. Van den Eede G, Lipp M, Eyquem F, Anklam E (2000) European Commission, Joint Research Centre, IHCP. EUR 19676 EN

  13. Rudi K, Holck A, Matforsk, Norway, personal communication

  14. García-Cañas V, Gonzáles R, Cifuentes A (2002) J Agric Food Chem 50:1016–1021

    Article  PubMed  Google Scholar 

  15. Burns M, Shanahan D, Valdivia H, Harris N (2003) Eur Food Res Technol (in press)

  16. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Plant Mol Biol 17:1105–1109

    CAS  PubMed  Google Scholar 

  17. Zimmermann A, Liniger M, Lüthy J, Pauli U (1998) Lebensm-Wiss u Technol 31:664–667

    Google Scholar 

  18. Ehlers B, Strauch E, Goltz M, Kubsch D, Wagner H, Maidhof H, Bendiek J, Appel B, Buhk H-J (1997) Bundesgesundhbl 4:118–121

    Google Scholar 

  19. Vaïtilingom M, Pijnenburg H, Gendre F, Brignon P (1999) J Agric Food Chem 47:5261–5266

    PubMed  Google Scholar 

  20. Hernandez M, Rio A, Esteve T, Prat S, Pla M. (2001) J Agric Food Chem 49:3622–3627

    Article  CAS  PubMed  Google Scholar 

  21. Meyer R, Chardonnens F, Hübner P, Lüthy J (1996) Z Lebensm Unters Forsch 203:339–344

    CAS  PubMed  Google Scholar 

  22. Busch U, Mühlbauer B, Schulze M, Zagon J (1999) Deutsche Lebensmittelrundschau Heft 2:52–56

    Google Scholar 

  23. Pietsch K, Waiblinger H-U, Brodmann P, Wurz A (1997) Deutsche Lebensm Rundsch 93:35–38

    CAS  Google Scholar 

  24. Matsuoka T, Kuribara H, Takubo K, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2002) J Agric Food Chem 50:2100–2109

    Article  CAS  PubMed  Google Scholar 

  25. Matsuoka T, Kuribara H, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2001) J Food Hyg Soc Japan 42:24–32

    CAS  Google Scholar 

  26. Hupfer C, Hotzel H, Sachse K, Engel K-H (1998) Z Lebensm Unters Forsch 206:203–207

    Article  CAS  Google Scholar 

  27. Wurz A, Willmund (1997) Foods produced by means of genetic engineering. In: Schrieber, GA, Bögl KW (eds) 2nd status report. BgVV-Heft 1/1997, pp 115–117

  28. Zimmermann A, Lüthy J, Pauli U (2000) Lebensm-Wiss u Technol 33:210–216

    Google Scholar 

  29. Rønning SB, Vaïtilingom M, Berdal KG, Holst-Jensen A (2003) Eur Food Res Technol (in press)

  30. Holck A, Vaïtilingom M, Didierjean L, Rudi K (2002) Eur Food Res Technol 214:449–454

    CAS  Google Scholar 

  31. Hernandez M, Pla M, Esteve T, Prat S, Puigdomenech P, Ferrando A (2002) Transgenic Res (in press)

  32. Windels P, Bertrand S, Depicker A, Moens W, Van Bockstaele E, De Loose M (2003) Eur Food Res Technol (in press)

  33. Taverniers I, Wiendels P, Van Bockstaele E, De Loose M (2001) Eur Food Res Technol 213:417–424

    CAS  Google Scholar 

  34. Terry C, Harris N (2001) Eur Food Res Technol 213:425–431

    CAS  Google Scholar 

  35. Arumuganathan K, Earle ED (1991) Plant Mol Biol Rep 9:211–215

    Google Scholar 

  36. Kay S, Van den Eede G (2001) Nature Biotechnol 19:405

    CAS  Google Scholar 

  37. Windels P, Taverniers I, Depicker A, Van Bockstaele E, De Loose M (2001) Eur Food Res Technol 213:107–112

    Article  CAS  Google Scholar 

  38. Prokisch J, Zeleny R, Trapmann S, Le Guern L, Schimmel H, Kramer GN, Pauwels J (2001) Fresen J Anal Chem 370:935–939

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the European Commissions Framework 5, Quality of Life program, within the project "Reliable, Standardised, Specific, Quantitative Detection of Genetically Modified Food" (QLK1–1999–01301), and a grant from the Research Council of Norway (NFR 136430/130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Holst-Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holst-Jensen, A., Rønning, S.B., Løvseth, A. et al. PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal Bioanal Chem 375, 985–993 (2003). https://doi.org/10.1007/s00216-003-1767-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1767-7

Keywords

Navigation