Skip to main content
Log in

Detecting Reaction Pathways and Computing Reaction Rates in Condensed Phase

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Methods for the computation of rate constants that characterize classical reactions occurring in the condensed phase are discussed. While microscopic expressions for these transport properties are well known, their computation presents challenges for simulation since reactive events often occur rarely, and the long time scales that are typical for reactive processes are not accessible using simple molecular dynamics methods. Furthermore, the underlying free energy surface is very complex with many saddle points that prevent sampling of possible reaction pathways. As a result, the reaction coordinate may be a complex many-body function of the system’s degrees of freedom. Since there is not an a priori way to define a “good” reaction coordinate, methods are being developed to assist in a systematic construction of a reaction coordinate. These methods are reviewed and examples of non-trivial reaction coordinates are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonn M, Funk S, Hess CH, Denzler DN, Stampfl C Scheffler M Wolf M, Ertl G (1999). Science 285:1042

    Article  CAS  Google Scholar 

  2. Neumark DM (2004). In: Yang X, Liu K (eds). In: Advanced series in physical chemistry, modern trends in chemical reaction dynamics (part 1). vol. 14. World Scientific Publishing, Singapore, p 453

  3. Neumark DM (2005). Phys Chem Chem Phys 7(14):433

    Article  CAS  Google Scholar 

  4. Folmer DE, Poth L, Wisniewski ES, Castleman AW (1998). J Chem Phys Lett 287:1

    Article  CAS  Google Scholar 

  5. Zewail AH (1994). In: Femtochemistry: ultrafast dynamics of the chemical bond. World Scientific, Singapore

  6. Stolow A, Bragg AE, Neumark DM (2004). Chem Rev 104:1719

    Article  CAS  Google Scholar 

  7. Dermota TE, Zhong Q, Castleman AWJ (2004). Chem Rev 104:1861

    Article  CAS  Google Scholar 

  8. Elles CG, Cox MJ, Barnes GL, Crim FF (2004). J Phys Chem A 108:10973

    CAS  Google Scholar 

  9. Frenkel D, Smit B (2001). In: Understanding molecular simulation: from algorithms to applications, 2nd edn. Elsevier, Amsterdam

  10. Sachs C, Hildebrand M, Volkening S, Wintterlin J, Ertl G (2001). Science 293:1635

    Article  CAS  Google Scholar 

  11. Hnggi P, Talkner P, Borkovec M (1990). Rev Mod Phys 62:251–341

    Article  Google Scholar 

  12. Cramer CJ, Truhlar DG (1999). Chem Rev 99:2161–2200

    Article  CAS  Google Scholar 

  13. Berne BJ, Ciccotti G, Coker DF (eds). (1998). In: Classical and quantum dynamics in condensed phase simulations. World Scientific Publishing, Singapore

  14. Kapral R, Ciccotti G (2005). In: Dykstra C (ed). Theory and applications of computational chemistry. Elsevier BV, Amsterdam

  15. Truhlar DG, Garrett BC, Klippenstein SJ (1996). J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  16. Smoluchowski MV (1915). Ann Phys 48:1103

    Google Scholar 

  17. Kramers HA (1940). Physica 7:284

    Article  CAS  Google Scholar 

  18. Grote F, Hynes JT (1980). J Chem Phys 73:2715

    Article  CAS  Google Scholar 

  19. Grote F, Hynes JT (1981). J Chem Phys 74:4465

    Article  CAS  Google Scholar 

  20. Grote F, Hynes JT (1981). J Chem Phys 75:2191

    Article  CAS  Google Scholar 

  21. Adelman SA, Muralidhar R (1991). J Chem Phys 95:2752

    Article  CAS  Google Scholar 

  22. Gertner BJ, Wilson KR, Hynes JT (1989). J Chem Phys 90:3537

    Article  CAS  Google Scholar 

  23. Ciccotti G, Hynes JT, Kapral R (1990). J Chem Phys 93:7137

    Article  CAS  Google Scholar 

  24. Zwanzig R (2001). Nonequilibrium statistical mechanics. Oxford University Press, New York

    Google Scholar 

  25. Zhou H-X, Zwanzig R (2002). J Phys Chem 106:7562

    CAS  Google Scholar 

  26. van der Zwan G, Hynes JT (1983). J Phys Chem 78:4174

    Article  Google Scholar 

  27. van der Zwan G, Hynes JT (1984). Chem Phys 80:21

    Article  Google Scholar 

  28. Dakhnovskii YI, Ovchinnikov AA (1985). Phys Lett 113A:147

    Article  Google Scholar 

  29. Pollak E (1986). J Chem Phys 85:865

    Article  CAS  Google Scholar 

  30. Hnggi P, Weiss U (1984). Phys Rev A 29:2265

    Article  Google Scholar 

  31. Straub JE, Berne BJ (1986). J Chem Phys 85:2999

    Article  CAS  Google Scholar 

  32. Talkner P, Hnggi P (eds). (1995). In: New trends in Kramers’ reaction rate theory. Kluwer, Dordrecht

  33. Yamamoto T (1960). J Chem Phys 33:281

    Article  CAS  Google Scholar 

  34. Chandler D (1978). J Chem Phys 68:2959

    Article  CAS  Google Scholar 

  35. Bennet CH (1977). In: Christofferson RE (ed). Algorithms for chemical computations. ACS Symp. Ser. No. 46. American Chemical Society, Washington, DC. p 63

  36. Kapral R (1981). Adv Chem Phys 48:71

    CAS  Google Scholar 

  37. Chandler D (1987). In: Introduction to modern statistical mechanics. Oxford University Press, New York

  38. Voth GA, Chandler D, Miller WH (1989). J Phys Chem 93:7009

    Article  CAS  Google Scholar 

  39. Ciccotti G, Ferrario M, Laria D, Kapral R (1995). In: Manghi F, Reatto L (eds). Progress in computational physics of matter: methods, software and applications

  40. Kapral R (1972). J Chem Phys 56:1842

    Article  CAS  Google Scholar 

  41. Zwanzig R (1961). Phys Rev 124:983

    Article  CAS  Google Scholar 

  42. Zwanzig R (1965). Ann Rev Phys Chem 16:67

    Article  CAS  Google Scholar 

  43. Mori H (1965). Prog Theor Phys 34:399

    Article  Google Scholar 

  44. Mori H (1965). Prog Theor Phys 33:423

    Article  Google Scholar 

  45. Kapral R, Consta S, McWhirter L (1998). In: Berne BJ, Ciccotti G, Coker DF (eds). Classical and quantum dynamics in condensed phase simulations, pp 587

  46. Schenter GK, Garrett BC, Truhlar DG (2003). J Chem Phys 119:5828–5833

    Article  CAS  Google Scholar 

  47. Torrie GM, Valleau JP (1977). J Comp Phys 23:187

    Article  Google Scholar 

  48. Carter EA, Ciccotti G, Hynes JT, Kapral R (1989). Chem Phys Lett 156:472

    Article  CAS  Google Scholar 

  49. Sprik M, Ciccotti G (1998). J Chem Phys 109:7737

    Article  CAS  Google Scholar 

  50. Sergi A, Ciccotti G, Falconi M, Desideri A, Ferrario M (2002). J Chem Phys 116:6329

    Article  CAS  Google Scholar 

  51. Coluzza I, Sprik M, Ciccotti G (2003). Mol Phys 101:2885

    Article  CAS  Google Scholar 

  52. Ciccotti G, Kapral R, Vanden-Eijnden E (2005). Phys Chem Chem Phys (to appear)

  53. Laio A, Parrinello M (2002). Proc Natl Acad Sci USA 99:12562

    Article  CAS  Google Scholar 

  54. Iannuzzi M, Laio A, Parrinello M (2003). Phys Rev Lett 90:238302

    Article  Google Scholar 

  55. Zeldovich J (1942). J Expr Theor Phys (Russia) 12:525

    CAS  Google Scholar 

  56. ten Wolde PR, Ruiz-Montero MJ, Frenkel D (1996). J Chem Phys 104:9932

    Article  CAS  Google Scholar 

  57. Truhlar DG, Gao JL, Garcia-Viloca M, Alhambra C, Corchado J, Sanchez ML, Poulsen TD (2004). Int J Quant Chem 100:1136–1152

    Article  CAS  Google Scholar 

  58. Weinan E, Vanden-Eijnden E (2004). In: Attinger S, Koumoutsakos P (eds) Multiscale modelling and simulation, Lecture notes in computational science and engineering, vol 39. Springer, Berlin Heidelberg New York

  59. Bolhuis PG, Dellago C, Chandler D (1998). Faraday Discuss Chem Soc 110:421

    Article  CAS  Google Scholar 

  60. Dellago C, Bolhuis P, Geissler PL (2002). Adv Chem Phys 123:1

    CAS  Google Scholar 

  61. Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002). Ann Rev Phys Chem 53:291

    Article  CAS  Google Scholar 

  62. Pratt LR (1986). J Chem Phys 85:5045

    Article  CAS  Google Scholar 

  63. Elber R, Meller J, Olender R (1999). J Phys Chem 103:899

    CAS  Google Scholar 

  64. Elber R, Shalloway D (2002). J Chem Phys 112:5539

    Article  Google Scholar 

  65. Elber R, Ghosh A, Cárdenas A (2002). Acc Chem Res 35:396

    Article  CAS  Google Scholar 

  66. Ulitsky A, Elber R (1990). J Chem Phys 92:1510

    Article  CAS  Google Scholar 

  67. Jónsson H, Mills G, Jacobsen KW (1998). In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations, pp 385

  68. Henkelman G, Jónsson H (2000). J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  69. Weinan E, Ren W, Vanden-Eijnden E (2002). Phys Rev B 66:05230

    Google Scholar 

  70. Weinan E, Ren WQ, Vanden-Eijnden E (2005). J Phys Chem 109(14):6688

    Google Scholar 

  71. Kebarle P (2000). J Mass Spectrom 35:804

    Article  CAS  Google Scholar 

  72. Fenn JB, Rosell J, Meng CK (1997). J Am Soc Mass Spectrom 8:1147

    Article  CAS  Google Scholar 

  73. Consta S (2002). J Mol Struct Theochem 591:131

    Article  CAS  Google Scholar 

  74. Consta S, Mainer KR, Novak W (2003). J Chem Phys 119:10125

    Article  CAS  Google Scholar 

  75. Consta S, Kapral R (1999). J Chem Phys 111:10183

    Article  CAS  Google Scholar 

  76. Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M (2001). Sience 291:2121

    CAS  Google Scholar 

  77. Geissler PL, Dellago C, Chandler D (1999). J Phys Chem B 103:3706

    Article  CAS  Google Scholar 

  78. Truhlar DG, Garrett BC (2000). J Phys Chem B 104:1069–1072

    Article  CAS  Google Scholar 

  79. McQuarrie DA (1976). In: Statistical mechanics. HarperCollins, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Styliani Consta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Consta, S. Detecting Reaction Pathways and Computing Reaction Rates in Condensed Phase. Theor Chem Acc 116, 373–382 (2006). https://doi.org/10.1007/s00214-005-0033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0033-9

Keywords

Navigation