Skip to main content

Advertisement

Log in

Larger laboratory colonies consume proportionally less energy and have lower per capita brood production in Temnothorax ants

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Colony size can affect individual- and colony-level behavioral and physiological traits in social insects. Changes in behavior and physiology in response to colony growth and development can affect productivity and fitness. Here, we used respirometry to study the relationship between colony size and colony energy consumption in Temnothorax rugatulus ants. In addition, we examined the relationship between colony size and worker productivity measured as per capita brood production. We found that colony metabolic rate scales with colony size to the 0.78 power and the number of brood scales with the number of workers to the 0.49 power. These regression analyses reveal that larger ant colonies use proportionally less energy and produce fewer brood per worker. Our findings provide new information on the relationships between colony size and energetic efficiency and productivity in a model ant genus. We discuss the potential mechanisms giving rise to allometric scaling of metabolic rate in ant colonies and the influence of colony size on energy consumption and productivity in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson C. and McShea D.W. 2001. Individual versus social comple-xity, with particular reference to ant colonies. Biol. Rev. 76: 211-237.

    Google Scholar 

  • Arcila A.M., Ulloa-Chacon P. and Gomez L.A. 2002. Factors that influence individual fecundity of queens and queen production in crazy ant Paratrechina fulva (Hymenoptera: Formicidae). Sociobiology 39: 323-334.

    Google Scholar 

  • Blanchard G.B., Orledge G.M., Reynolds S.E. and Franks N.R. 2000. Division of labour and seasonality in the ant Leptothorax albi-pennis: worker corpulence and its influence on behaviour. Anim. Behav. 59: 723-738.

    Google Scholar 

  • Bourke A.F.G. 1999. Colony size, social complexity and reproductive conflict in social insects. J. Evol. Biol. 12: 245-257.

    Google Scholar 

  • Bruce A.I. and Burd M. 2012. Allometric scaling of foraging rate with trail dimensions in leaf-cutting ants. Proc. R. Soc. B-Biol. Sci. 279: 2442-2447.

    Google Scholar 

  • Cao T.T. and Dornhaus A. 2008. Ants under crowded conditions consume more energy. Biol. Lett. 4: 613-615.

    Google Scholar 

  • Chown S.L., Marais E., Terblanche J.S., Klok C.J., Lighton J.R.B. and Blackburn T.M. 2007. Scaling of insect metabolic rate is incon-sistent with the nutrient supply network model. Funct. Ecol. 21: 282-290.

    Google Scholar 

  • Fewell J.H., Harrison J.F., Lighton J.R.B. and Breed M.D. 1996. Foraging energetics of the ant, Paraponera clavata. Oecologia 105: 419-427.

  • Gautrais J., Theraulaz G., Deneubourg J.L. and Anderson C. 2002. Emergent polyethism as a consequence of increased colony size in insect societies. J. Theor. Biol. 215: 363-373.

    Google Scholar 

  • Hamilton W.D. 1964. Genetic evolution of social behaviour I. J. Theor. Biol. 7: 1-16.

    Google Scholar 

  • Hölldobler B. and Wilson E.O. 1990. The Ants. Belknap Press, Cambridge, MA.

  • Hou C., Kaspari M., Zanden H.B.V. and Gillooly J.F. 2010. Energetic basis of colonial living in social insects. Proc. Natl Acad. Sci. U.S.A. 107: 3634-3638.

    Google Scholar 

  • Hurlbert A.H., Ballantyne F. and Powell S. 2008. Shaking a leg and hot to trot: the effects of body size and temperature on running speed in ants. Ecol. Entomol. 33: 144-154.

    Google Scholar 

  • Jayatilaka P., Narendra A., Reid S.F., Cooper P. and Zeil J. 2011. Different effects of temperature on foraging activity schedules in sympatric Myrmecia ants. J. Exp. Biol. 214: 2730-2738.

    Google Scholar 

  • Jun J., Pepper J.W., Savage V.M., Gillooly J.F. and Brown J.H. 2003. Allometric scaling of ant foraging trail networks. Evol. Ecol. Res. 5: 297-303.

    Google Scholar 

  • Karsai I. and Wenzel J.W. 1998. Productivity, individual-level and colony-level flexibility, and organization of work as consequen-ces of colony size. Proc. Natl Acad. Sci. U.S.A. 95: 8665-8669.

    Google Scholar 

  • Lighton J.R.B., Bartholomew G.A. and Feener D.H. 1987. Energetics of locomotion and load carriage and a model of the energy-cost of foraging in the leaf-cutting ant Atta colombica Guer. Physiol. Zool. 60: 524-537.

    Google Scholar 

  • Lighton J.R.B. 1991. Measurements on insects. In: Concise Encyclopedia on Biological and Biomedical Measurement Systems (Payne C.A., Ed). Pergamon Press, Oxford, UK, pp 201-208.

  • Mailleux A.C., Deneubourg J.L. and Detrain C. 2003. How does colony growth influence communication in ants? Insect. Soc. 50: 24-31.

    Google Scholar 

  • Michener C.D. 1964. Reproductive efficiency in relation to colony size in Hymenopterous societies. Insect. Soc. 11: 317-341.

    Google Scholar 

  • Naug D. and Wenzel J. 2006. Constraints on foraging success due to resource ecology limit colony productivity in social insects. Behav. Ecol. Sociobiol. 60: 62-68.

    Google Scholar 

  • Oster G.F. and Wilson E.O. 1978. Caste and Ecology in the Social Insects. Princeton University Press, Princeton, NJ.

  • Porter S.D. and Tschinkel W.R. 1985. Fire ant polymorphism—the ergonomics of brood production. Behav. Ecol. Sociobiol. 16: 323-336.

    Google Scholar 

  • Pratt S.C. 2005. Quorum sensing by encounter rates in the ant Temno-thorax albipennis. Behav. Ecol. 16: 488-496.

    Google Scholar 

  • Robinson E.J.H., Feinerman O. and Franks N.R. 2009. Flexible task allocation and the organization of work in ants. Proc. R. Soc. B Biol. Sci. 276: 4373-4380.

    Google Scholar 

  • Robinson E.J.H., Franks N.R., Ellis S., Okuda S. and Marshall J.A.R. 2011. A simple threshold rule is sufficient to explain sophisticated collective decision-making. PLoS One 6: doi:e1998110.1371/journal.pone.0019981.

  • Schrempf A., Cremer S. and Heinze J. 2011. Social influence on age and reproduction: reduced lifespan and fecundity in multi-queen ant colonies. J. Evol. Biol. 24: 1455-1461.

    Google Scholar 

  • Smith C.R. and Tschinkel W.R. 2006. The sociometry and sociogenesis of reproduction in the Florida harvester ant, Pogonomyrmex badius. J Insect Sci. 6: 1-11.

    Google Scholar 

  • Sokal R.R. and Rohlf F.J. 1995. Biometry. W.H. Freeman, New York.

  • Takahashi-Del-Bianco M., Hebling M.J.A. and Bueno O.C. 1998. Respiratory metabolism of Camponotus rufipes ants: brood and adults. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 119: 529-532.

    Google Scholar 

  • Thomas M.L. 2003. Seasonality and colony-size effects on the life-history characteristics of Rhytidoponera metallica in temperate south-eastern Australia. Aust. J. Zool. 51: 551-567.

    Google Scholar 

  • Tschinkel W.R. 1993. Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol. Monogr. 63: 425-457.

  • Tschinkel W.R. 1998. Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: worker characteristics in relation to colony size and season. Insect. Soc. 45: 385-410.

    Google Scholar 

  • Vogt J.T. and Appel A.G. 1999. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: effects of temperature, mass, and caste. J. Insect Physiol. 45: 655-666.

  • Waters J.S., Holbrook C.T., Fewell J.H. and Harrison J.F. 2010. Allometric scaling of metabolism, growth, and activity in whole colonies of the seed-harvester ant Pogonomyrmex californicus. Am. Nat. 176: 501-510.

    Google Scholar 

  • West G.B., Brown J.H. and Enquist B.J. 1997. A general model for the origin of allometric scaling laws in biology. Science 276: 122-126.

    Google Scholar 

  • West G.B., Woodruff W.H. and Brown J.H. 2002. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl Acad. Sci. U.S.A. 99: 2473-2478.

    Google Scholar 

  • Wheeler W.M. 1911. The ant-colony as an organism. J. Morphol. 22: 307-325.

    Google Scholar 

Download references

Acknowledgments

We thank Brian Enquist and Mitchell Pavao-Zuckerman for helpful comments on the original manuscript. Two anonymous reviewers provided significantly helpful comments to improve the original draft. The Department of Ecology and Evolutionary Biology at the University of Arizona provided funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, T.T., Dornhaus, A. Larger laboratory colonies consume proportionally less energy and have lower per capita brood production in Temnothorax ants. Insect. Soc. 60, 1–5 (2013). https://doi.org/10.1007/s00040-012-0256-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-012-0256-4

Keywords

Navigation