Skip to main content
Log in

Robertsonian fusion and centric fission in karyotype evolution of higher plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Robertsonian fusion and centric fission are uniquely detectable in comparative studies of karyotype patterns. They are the most important types of karyotype change in animals but seem to be relatively uncommon in higher plants. Both modify intra- and interchromosomal recombination and linkage relationships and consequently patterns of genetic variation. When differentiating populations or species they can produce postulating barriers to gene flow. The number of reported cases of fusion or fission in higher plants has increased over the years but remains low, and most of these are casual comparisons of karyotypes without any follow-up investigation. This review focuses on more adequate studies made in a few groups.

Studies in the Tradescantieae produce the strongest evidence for fusion as a type of orthoselection in the subfamily. Some species ofLycoris are also considered to have evolved their karyotypes in that way. Some genera of slipper orchids and the cycad genusZamia have populations where atypical chromosome number increase can be attributed to fission probably as a result of stressful influences.

It is suggested that fusion may have been involved in the evolution of many stable karyotypes and that fission is generally a secondary destabilizing mechanism which may lead to refusion in the long term. Their proven incidence remains making it unwise to suggest that they have been major influences in karyotype evolution in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bennett, M. D. &I. J. Leitch 1997. Nuclear DNA amounts in Angiosperms—583 new estimates. Ann. Bot. 80: 169–196.

    Article  CAS  Google Scholar 

  • Bidau, C. J. 1990. The complex Robertsonian system ofDichroplus pratensis (Melanoplinae: Acrididae). II. Effects of the fusion polymorphisms on chiasma frequency and distribution. Heredity 64: 145–159.

    Google Scholar 

  • —. 1993. Causes of chiasma repatterning due to centric fusions. Rev. Brasil. Genet. 16: 283–296.

    Google Scholar 

  • Brandham, P. E. 1976. The frequency of spontaneous structural change. Pp. 77–87in K. Jones & P. E. Brandham (eds.), Current chromosome research. North-Holland Publishing, New York.

    Google Scholar 

  • —. 1983. Evolution in a stable chromosome system. Pp. 251–260in P. E. Brandham & M. D. Bennett (eds.), Kew Chromosome Conference II. Allen & Unwin, Boston.

    Google Scholar 

  • Brighton, C. A. 1978. Telocentric chromosomes in CorsicanCrocus L. (Iridaceae). Pl. Syst. Evol. 129: 299–314.

    Article  Google Scholar 

  • Caputo, P., S. Cozzolino, L. Gaudio, A. Moretti &D. W. Stevenson. 1996. Karyology and phylogeny of some Mesoamerican species ofZamia. Amer. J. Bot. 83: 1513–1520.

    Article  Google Scholar 

  • Cox, A. V., S. T. Bennett, A. S. Parokonny, A. Kenton, M. A. Callimassia &M. D. Bennett. 1993. Comparison of plant telomere locations using a PCR-generated synthetic probe. Ann. Bot. 72: 239–247.

    Article  CAS  Google Scholar 

  • —,D. G. Abdelnour, M. D. Bennett &I. J. Leitch. 1998. Genome size and karyotype evolution in the slipper orchids (Cypripedioideae: Orchidaceae). Amer. J. Bot. 85: 681–687.

    Article  Google Scholar 

  • —,A. M. Pridgeon, V. A. Albert &M. Chase. 1997a. Phylogenetics of the slipper orchids (Cypripedioideae: Orchidaceae). Nuclear rDNA—its sequences. Pl. Syst. Evol. 208: 197–223.

    Article  Google Scholar 

  • —— &M. A. T. Johnson. 1997b. Cytological characterization ofMexipedium xerophyticum (Cypripedioideae: Orchidaceae). Lindleyana 12: 162–165.

    Google Scholar 

  • Cribb, P. J. 1987. The genusPaphiopedilum. Collingridge, London.

    Google Scholar 

  • Crosa, O. 1972. Estudios cariologia en el géneroNothoscordum (Liliaceae). Bol. Fac. Agr. Uruguay 122: 3–8.

    Google Scholar 

  • Darlington, C. D. 1956. Chromosome botany. Allen & Unwin, London.

    Google Scholar 

  • Gibby, M., S. Hinnah, E. Marais &F. Alben. 1996. Cytological variation and evolution withinPelargonium sect.Hoarea (Geraniaceae). Pl. Syst. Evol. 203: 111–142.

    Article  Google Scholar 

  • Goldblatt, P. 1979. Chromosome cytology and karyotype change inGalaxia (Iridaceae). Pl. Syst. Evol. 133: 61–69.

    Article  Google Scholar 

  • —. 1980. Uneven diploid numbers and complex heterozygosity inHomeria (Tridaceae). Syst. Bot. 5: 337–340.

    Article  Google Scholar 

  • Hair, J. B. 1963. Cytogeographical relationships of the southern podocarps. Pp. 401–414in J. L. Gressitt et al. (eds.), Pacific basin biogeography. Bishop Museum Press, Honolulu.

    Google Scholar 

  • —. 1966. Biosystematics of the New Zealand flora, 1945–1964. New Zealand J. Bot. 4: 559–595.

    Google Scholar 

  • — &E. J. Beuzenberg. 1958a. Chromosomal evolution in the Podocarpaceae. Nature 181: 1584–1586.

    Article  Google Scholar 

  • — 1958b. Contributions to the chromosome atlas of the New Zealand flora 1. New Zealand J. Sci. 1958: 617–628.

    Google Scholar 

  • Hunt, D. R. 1980. Sections and series in Tradescantia. American Commelinaceae IX. Kew Bull. 35: 437–442.

    Article  Google Scholar 

  • Inariyama, S. 1932. Cytological studies of the genusLycoris 1. Conjugation of chromosomes in meiosis inL. albiflora Koidz. Bot. Mag. Tokyo 46: 426–434.

    Google Scholar 

  • Jackson, R. C. 1962. Interspecific hybridization inHaplopappus and its bearing on chromosome evolution in theBlepharodon section. Amer. J. Bot. 49: 119–132.

    Article  Google Scholar 

  • John, B. &M. Freeman. 1975. Causes and consequences of Robertsonian exchange. Chromosoma (Berlin) 52: 123–136.

    Article  CAS  Google Scholar 

  • Jones, K. 1974. Chromosome evolution by Robertsonian translocation inGibasis. Chromosoma (Berlin) 45: 353–368.

    Article  Google Scholar 

  • — 1977. The role of Robertsonian change in karyotype evolution in higher plants. Pp. 121–129in A. de la Chapelle & M. Sorsa (eds.), Chromosomes today: Proceedings of the 6th International Chromosome Conference. Oliver & Boyd, Edinburgh.

    Google Scholar 

  • — 1978. Aspects of chromosome evolution in higher plants. Adv. Bot. Res. 6: 120–194.

    Google Scholar 

  • —. 1990. Robertsonian change in alliesof Zebrina (Commelinaceae). Pl. Syst. Evol. 172: 263–271.

    Article  Google Scholar 

  • — &S. Bhattarai. 1981. Contributions to the cytotaxonomy of Commelinaceae.Gibasis linearis and its allies. Bot. J. Linn. Soc. 83: 141–156.

    Article  Google Scholar 

  • — &A. Kenton. 1984. Mechanisms of chromosome change in the evolution of the tribe Tradescantieae (Commelinaceae). Pp. 143–168in A. Sharma & A. K. Sharma (eds.), Chromosomes in evolution of eukaryotic groups. CRC Press, Florida.

    Google Scholar 

  • — &J. B. Smith. 1967. Chromosome evolution in the genusCrinum. Caryologia 20: 163–179.

    Google Scholar 

  • —,D. Papes &D. R. Hunt. 1975. Contributions to the cytotaxonomy of the Commelinaceae II. Further observations onGibasis geniculata and its allies. Bot. J. Linn. Soc. 71: 145–166.

    Article  Google Scholar 

  • —,A. Kenton &D. R. Hunt. 1981. Contributions to the cytotaxonomy of the Commelinaceae. Chromosome evolution inTradescantia sect.Cymbispatha. Bot. J. Linn. Soc. 83: 157–188.

    Article  Google Scholar 

  • Karasawa, K. 1978. Karyomorphological studies on the intraspecific variation ofPaphiopedilum insigne. La Chromosomo II-9: 233–255.

    Google Scholar 

  • —. 1979. Karyomorphological studies inPaphiopedilum, Orchidaceae. Bull. Hiroshima Bot. Gard. 2: 1–149.

    Google Scholar 

  • —. 1980. Karyomorphological studies inPhragmipedium, Orchidaceae. Bull. Hiroshima Bot. Gard. 3: 1–49.

    Google Scholar 

  • —. 1982. Karyomorphological studies on four species ofPaphiopedilum, Orchidaceae. Bull. Hiroshima Bot. Gard. 5: 70–79.

    Google Scholar 

  • —. 1986. Karyomorphological studies on nine taxa ofPaphiopedilum. Bull. Hiroshima Bot. Gard. 8: 23–42.

    Google Scholar 

  • — &M. Aoyama. 1986. Karyomorphological studies inCypripedium in Japan and Formosa. Bull. Hiroshima Bot. Gard. 8: 1–22.

    Google Scholar 

  • — &R. Tanaka. 1980. C-banding study on centric fission in the chromosomes ofPaphiopedilum. Cytologia 45: 97–102.

    Google Scholar 

  • Kenton, A. 1981a. Chromosome evolution in theGibasis linearis alliance. The Robertsonian differentiation of G.venustula andG. speciosa. Chromosoma (Berlin) 84: 291–304.

    Article  Google Scholar 

  • —. 1981b. A Robertsonian relationship in the chromosomes of two species ofHydrocleys (Butomaceae sens. lat). Kew Bull. 36: 487–492.

    Article  Google Scholar 

  • —. 1982. Chromosome evolution in Mexican species ofGibasis (Commelinaceae). Ph.D. thesis, Reading University, Reading, U.K.

    Google Scholar 

  • —. 1984. Robertsonian differentiation and preferential pairing revealed in species and F1 hybrids of theGibasis linearis group (Commelinaceae). Pl. Syst. Evol. 144: 221–240.

    Article  Google Scholar 

  • —,A. Davies &K. Jones. 1987. Identification of Renner complexes and duplications in permanent hybrids ofGibasis pulchella (Commelinaceae). Chromosoma (Berlin) 95: 424–434.

    Article  Google Scholar 

  • —,S. J. Owens &D. Langten. 1988. The origin of ring-formation and self-compatibility inGibasis pulchella (Commelinaceae). Pp. 75–84in P. E. Brandham (ed.), Kew Chromosome Conference III. Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Khosboo, T. N. 1962. Cytogenetical evolution in the gymnosperms. Proc. Summer Sch. Bot. Darjeeling: 119–135.

  • — &M. R. Ajuha. 1963. The chromosomes and relationships ofWelwitschia mirabilis. Chromosoma (Berlin) 14: 522–533.

    Article  Google Scholar 

  • King, M. 1993. Species evolution—the role of chromosome change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kokubugata, G. &K. Kondo. 1996. Differential fluorescent-banding in chromosomes of four species ofCycas (Cycadaceae). Bot. J. Linn. Soc. 120: 51–55.

    Article  Google Scholar 

  • Kollman, F. 1970. Karyotypes of threeAllium species of theerdelii group. Caryologia 23: 647–655.

    Google Scholar 

  • Kondo, K., G. Kokubugata, M. Hizume, R. Tanaka &T. Satake. 1995. A karyomorphological study of five species and one variety ofCycas. Cytologie 60: 141–147.

    Google Scholar 

  • Koyama, M. 1962. Meiosis inLycoris albiflora. Ann. Rep. Doshisha Women’s College 12: 9–12.

    Google Scholar 

  • —. 1978. Chromosome pairing in the genusLycoris II. Ann. Rep. Doshisha Women’s College 29: 272–282.

    Google Scholar 

  • Kurita, S. 1986. Variation and evolution in the karyotype ofLycoris I. General karyomorphological characteristics of the genus. Cytologie 51: 803–815.

    Google Scholar 

  • —. 1987a. Variation and evolution in the karyotype ofLycoris II. Karyotype analysis often taxa among which seven are native in China. Cytologie 52: 19–40.

    Google Scholar 

  • —. 1987b. Variation and evolution in the karyotype ofLycoris III. Intraspecific variation in the karyotype ofL. traubii Hayward. Cytologia 52: 117–128.

    Google Scholar 

  • —. 1987c. Variation and evolution in the karyotype ofLycoris IV. Intraspecific variation in the karyotype ofL. radiata (L’Herit.) Herb, and the origin of this triploid species. Cytologie 52: 137–149.

    Google Scholar 

  • —. 1988a. Variation end evolution in the karyotype ofLycoris VI. Intrapopulational and/or intraspecific variation in the karyotype ofL. sanguinea Maxim, var.kiushiana Makino and ver.koreana (Nakai) Koyeme. Cytologie 53: 307–321.

    Google Scholar 

  • —. 1988b. Variation and evolution in the keryotypeof Lycoris VII. Modes of karyotype elteretion within species end probable trend of karyotype evolution in the genus. Cytologie 53: 323–335.

    Google Scholar 

  • Kyhos, D. W. 1965. The independent aneuploid origin of two species ofChaenactis (Compositae) from a common ancestor. Evolution 19: 26–43.

    Article  Google Scholar 

  • Levan, A. &S. Emsweller. 1938. Structurel hybridity inNothoscordum fragrans. J. Hered. 29: 291–294.

    Google Scholar 

  • —,K. Fredga &A. A. Sandberg. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.

    Google Scholar 

  • Marchant, C. J. 1968. Chromosome patterns and nuclear phenomena in the cycad families Stangeriaceae and Zamieceae. Chromosome (Berlin) 24: 100–134.

    Article  Google Scholar 

  • Mattsson, O. 1971. Cytologicel observations within the genusZebrina. Bot. Tidsskr. 66: 189–227.

    Google Scholar 

  • Maxted, N., M. A. Callimassia &M. D. Bennett. 1991. Cytotaxonomic studies of eastern MediterraneenVicia species (Leguminosae). Pl. Syst. Evol. 177: 221–234.

    Article  Google Scholar 

  • Moretti, A. 1990a. Karyotypic data on North end Central American Zamiaceae (Cycedales) and their phylogenetic implications. Amer. J. Bot. 77: 1016–1029.

    Article  Google Scholar 

  • —. 1990b. Cytotaxonomy of cycads. Mem. New York Bot. Gard. 57: 114–122.

    Google Scholar 

  • — &S. Sabato. 1984. Karyotype evolution by centromeric fission inZamia (Cycadeles). Pl. Syst. Evol. 146: 215–233.

    Article  Google Scholar 

  • —,P. Caputo, L. Gaudio &D. W. Stevenson. 1991. Intraspecific chromosome variation inZamia (Zamiaceae, Cycadales). Caryologia 44: 1–10.

    Google Scholar 

  • Moscone, A., M. Lambrou, A. T. Hunziker &F. Ehrendorfer. 1993. Giemsa C-banded karyotypes inCapsicum (Solanaceae). Pl. Syst. Evol. 186: 213–229.

    Article  Google Scholar 

  • Norstog, K. 1980. Chromosome numbers inZamia. Caryologia 33: 419–428.

    Google Scholar 

  • —. 1981. Karyotypes ofZamia chigua (Cycedeles). Ceryologia 34: 255–260.

    Google Scholar 

  • Nuflez, O. 1990. Evolucion ceriotfpicaen el géneroNothoscordum. Acad. Nac. Ca. Ex. Fis. Net., Buenos Aires. Monogr. 5: 55–61.

    Google Scholar 

  • —,N. Frayssinet &R. Rodriguez. 1972. Los cromosomas deNothoscordum Kunth (Liliaceae). Darwinia 17: 243–245.

    Google Scholar 

  • ——— &K. Jones. 1974. Cytogenetic studies in the genusNothoscordum Kunth. I. TheN. inodorum polyploid complex. Caryologia 23: 235–254.

    Google Scholar 

  • Parker, J. S. 1987. Increased chiasma frequency as a result of chromosome rearrangement. Heredity 58: 87–94.

    Google Scholar 

  • —,A. S. Wilby &S. Taylor. 1988. Chromosome stability and instability in plants. Pp. 131–140in P. E. Brandham (ed.), Kew Chromosome Conference III. Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Redi, C. A., S. Garagna &E. Cappana. 1990. Nature’s experiment within situ hybridization? A hypothesis for the mechanism of Rb fusion. J. Evol. Biol. 3: 133–137.

    Article  Google Scholar 

  • Rousi, A. 1961. Cytotaxonomical studies onVicia cracca L. andV. tenuifolia Roth. Hereditas 47: 81–110.

    Article  Google Scholar 

  • Sax, K. &J. M. Beale. 1934. Chromosomes of the Cycadales. J. Arnold Arb. 15: 255–258.

    Google Scholar 

  • Schubert, I. &R. Reiger. 1990. Alteration by centric fission of the diploid number inVicia faba L. Genetica 81: 67–69.

    Article  Google Scholar 

  • Stone, D. E. &J. L. Freeman. 1968. Cytotaxonomy ofIllicium floridanum andI. parviflorum (Illiceaceae). J. Arnold Arb. 49: 41–51.

    Google Scholar 

  • Strid, A. 1968. Stable telocentric chromosomes formed by spontaneous misdivision inNigella doerfleri. Bot. Not. 121: 153–164.

    Google Scholar 

  • Vovides, A. P. 1983. Systematic studies on the MexicanZamiaceae. I. Chromosome numbers and karyotypes. Amer. J. Bot. 70: 1002–1006.

    Article  Google Scholar 

  • — &M. Olivares. 1996. Karyotype polymorphism in the cycadlamia loddigesii (Zamiaceae) of the Yucatan peninsula, Mexico. Bot. J. Linn. Soc. 120: 77–83.

    Article  Google Scholar 

  • Weins, D. &B. A. Barlow. 1975. Permanent translocation heterozygosity and sex determination in East African mistletoes. Science 187: 1208–1209.

    Article  Google Scholar 

  • Werner, J. E., R. S. Kota, B. S. Gill &T. R. Endo. 1992. Distribution of telomeric repeats and their role in the healing of broken chromosome ends in wheat. Genome 35: 844–848.

    Google Scholar 

  • White, M. J. D. 1945. Animal cytology and evolution. Ed. 1. Cambridge University Press, Cambridge.

    Google Scholar 

  • —. 1973. Animal cytology and evolution. Ed. 3. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, K. Robertsonian fusion and centric fission in karyotype evolution of higher plants. Bot. Rev 64, 273–289 (1998). https://doi.org/10.1007/BF02856567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856567

Keywords

Navigation