Skip to main content
Log in

Nanoionics of advanced superionic conductors

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

New scientific direction — nanoionics of advanced superionic conductors (ASICs) was proposed. Nanosystems of solid state ionics were divided onto two classes differing by an opposite influence of crystal structure defects on the ionic conductivity σi (energy activationE): I) nanosystems on the base compounds with initial small σi (large values ofE); and II) nanosystems of ASICs (nano-ASICs) withE ≈0.1 eV.

The fundamental challenge of nanoionics as the conservation of fast ion transport (FIT) in nano-ASICs on the level of bulk crystal was first recognized and for the providing of FIT in nano-ASICs the conception of structure-ordered (coherent) ASIC//indifferent electrode (IE) heteroboundaries was proposed. Nano-ASIC characteristic parameterP=d Q (d is the thickness of ASIC layer with the defect crystal structure at the heteroboundary, and λ Q is the screening length of charge for mobile ions of the bulk of ASIC) was introduced. The criterion for a conservation of FIT in nano-ASIC isP≈1. It was shown that at the equilibrium conditions the contact potentialsV at the ASIC//IE coherent heterojunctions in nano-ASICs areV«k BT/e. Interface engineering approach “from advanced materials to advanced devices” was proposed as fundamentals for the development of applied nanoionics. The possibility for creation on the base of ASIC//IE coherent heterojunctions of the efficient energy and power devices (sensors and supercapacitors with specific capacity ≈10−4 F/cm2 and maximal frequencies 109–100 Hz,) suited for micro(nano)electronics, microsystem technology and 5 Gbit DRAM was pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Liang, J. Electrochem. Soc.120, 1289 (1973).

    CAS  Google Scholar 

  2. K. Shahi, J.B. Wagner, Appl. Phys. Lett.37, 757 (1980).

    Article  CAS  Google Scholar 

  3. J. Maier, Ber. Bunsenges. Phys. Chem.88, 1057 (1984).

    CAS  Google Scholar 

  4. D.O. Raleigh, H.R. Crowe, J. Electrochem. Soc.118, 79 (1971).

    CAS  Google Scholar 

  5. A.L. Despotuli, V.I. Nikolaichik, Solid State Ionics60, 275 (1993).

    Article  CAS  Google Scholar 

  6. A.L Despotuli, A.V. Andreeva, e-publication, http://preprint.chemweb.com/physchem/0309001 (2003).

  7. B. Owens, J. Power Sources90, 2 (2000).

    Article  CAS  Google Scholar 

  8. A.L Despotuli, A.V. Andreeva, Microsystem engineering (Rus)11, 2 (2003).

    Google Scholar 

  9. A.L Despotuli, A.V. Andreeva, Microsystem engineering (Rus)12, 2 (2003).

    Google Scholar 

  10. A.L. Despotuli, A.V. Andreeva, e-publication, http://preprint.chemweb.com/physchem/0306011 (2003)

  11. K.J. Lehovec, J. Chem. Phys.21, 1123 (1953).

    Article  CAS  Google Scholar 

  12. S. Chandra, Superionic Solids, North-Holland Publishing Company, 1981, p. 404.

  13. A.L. Despotuli, L.A. Despotuli, Phys. Solid State (Rus)39, 1544 (1997).

    CAS  Google Scholar 

  14. A.L. Despotuli, in: New Trends in Intercalation Compound for Energy Storage. NATO-SCIENCE SERIES. Volume61 (C. Julien et al., Eds.) Kluwer Academic Publishers, Dordrecht-Boston-London, 2002, p. 455.

    Google Scholar 

  15. A.L. Despotuli, V.I. Levashov, e-publication, http://preprint.chemweb.com/inorgchem/0208001 (2002).

  16. A.L. Despotuli, V.I. Levashov, L.A. Matveeva, Electrochemistry (Rus)39, 526 (2003).

    Google Scholar 

  17. P. Keblinski, J. Eggebrecht, D. Wolf, S.R. Phillpot, J. Chem. Phys.113, 282 (2000).

    Article  CAS  Google Scholar 

  18. A.A. Volkov, G.V. Kozlov, G.I. Mirzoev, V.G. Goffman, Letters in JETP (Rus)38, 182 (1983).

    CAS  Google Scholar 

  19. J. Maier, Solid State Ionics86–88, 55 (1996).

    Article  Google Scholar 

  20. J.-S. Lee, St. Adams, J. Maier, Solid State Ionics136–137, 1261 (2000).

    Article  Google Scholar 

  21. J. Maier, Solid State Ionics131, 13 (2000).

    Article  CAS  Google Scholar 

  22. J. Maier, Solid State Ionics154–155, 291 (2002).

    Article  Google Scholar 

  23. J. Maier, Solid State Ionics157, 327 (2003).

    Article  CAS  Google Scholar 

  24. J. Maier, Solid State Ionics148, 367 (2002).

    Article  CAS  Google Scholar 

  25. J. Maier, Z. Phys. Chem.217 (4), 415 (2003).

    CAS  Google Scholar 

  26. N. Sata, K. Eberman, K. Eberl, J. Maier, Nature408, 946 (2000).

    Article  CAS  Google Scholar 

  27. J. Jamnik, J. Maier, Phys. Chem. Chem. Phys.5, 5215 (2003).

    Article  CAS  Google Scholar 

  28. A.L. Despotuli, A.A. Shestakov, N.V. Lichkova, Solid State Ionics70/71, 130 (1994).

    Article  Google Scholar 

  29. J.H. Choy, N.G. Park, Y.I. Kim, S.H. Hwang, J. Phys. Chem.99, 7845 (1995).

    Article  CAS  Google Scholar 

  30. J.H. Choy, Y.I. Kim, S.J. Hwang, J. Phys. Chem. B102, 9191 (1998).

    Article  CAS  Google Scholar 

  31. A.L. Despotuli, A.V. Andreeva, in: Proceeding of International Workshop "Micro Robots, Micro Machines and Micro Systems", Institute for Problems in Mechanics RAS, Moscow, April 24–25, 2003, p. 129.

    Google Scholar 

  32. A.L. Despotuli, A.V. Andreeva, in: Book of Abstracts "7th International Meeting Fundamental Challenges of Solid State Ionics", Chernogolovka, June 16–18, 2004, p. 22.

  33. I.M. Lifshitz, Y.E. Geguzin, Phys. Solid State (Rus)7, 62 (1965).

    Google Scholar 

  34. V.N. Chebotin, L.M. Solov'eva, Electrochemistry (Rus)4, 858 (1968).

    CAS  Google Scholar 

  35. E.A. Ukshe, N.G. Bukun, Electrochemistry (Rus)26, 1373 (1990).

    CAS  Google Scholar 

  36. T. Watanabe, Res. Mechanica11, 47 (1984).

    CAS  Google Scholar 

  37. T. Watanabe, Acta Mater.47, 4171 (1999).

    Article  CAS  Google Scholar 

  38. T. Watanabe, in: Book of abstracts "International Conference "Interfaces in advanced materials", Chernogolovka, May 26–30, 2003, p. 2.

  39. A.I. Il'in, A.V. Andreeva, B.N. Tolkunov, Mat. Sci. Forum.206, 625 (1996).

    Article  Google Scholar 

  40. O.V. Kononenk, A.V. Andreeva, A.I. Il'in, V.N. Matveev, in: MRS-Proceedings, 2002, p. 574.

  41. A.V. Andreeva, N.M. Talijan et al., e-publication, http://preprint.chemweb.com/inorgchem/0302001 (2003).

  42. M. Backhaus-Ricoult, M.-F. Trichet, Solid State Ionics150, 143 (2002).

    Article  CAS  Google Scholar 

  43. R. Röttger, H. Schmalzried, Solid State Ionics150, 131 (2002).

    Article  Google Scholar 

  44. D.M. Kolb, Surface Science500, 722 (2002).

    Article  CAS  Google Scholar 

  45. Zh.I. Alferov, Uspehi Phys. Sci.172, 1068 (2002).

    Article  Google Scholar 

  46. A.V. Andreeva, A.L. Despotuli, in: Book of abstracts "International Conference Interfaces in advanced materials", Chernogolovka, May 26–30, 2003, p. 32.

  47. A.L. Despotuli, A.V. Andreeva, in: Book of extending abstracts. International Conference "INTERMATIC-2003", Moscow, June 9–12, 2003, p. 156.

  48. A.V. Andreeva, in: Proceeding of 5th Russian Conferene on Physicochemistry of Ultra-Dispersoid System (V.F. Petrunin, Ed.) MEPI, Moscow, 2000, p. 32.

    Google Scholar 

  49. A.L. Despotuli, N.V. Lichkova, N.A. Minenkova, S.V. Nosenko, Electrochemistry (Rus)26, 1524 (1990).

    CAS  Google Scholar 

  50. A.V. Andreeva, Surface: Physics, Chemistry, Mechanics46, 117 (1990).

    Google Scholar 

  51. A.V. Andreeva, A.A. Firsova, Preprint of IMT AN USSR, Chernogolovka, 1990, p. 44.

  52. A.V. Andreeva, Mat. Sci. Forum69, 111 (1991).

    Google Scholar 

  53. A.V. Andreeva, D.L. Meiler, Crystal properties and preparation35—38, 358 (1991).

    Google Scholar 

  54. T. Ochs, S. Köstlmeier, C. Elsässer, Integr. Ferroelectrics32, 959 (2000).

    Google Scholar 

  55. M. Kiguchi, H. Inoue, T. Sasaki et al., Surf. Sci.522, 84 (2003).

    Article  CAS  Google Scholar 

  56. S. Bredikhin, T. Hattori, M. Ishigame, Phys. Rev. B50, 2444 (1994).

    Article  CAS  Google Scholar 

  57. http://www.skeleton-technologies.com

  58. P. Bergamo, S. Asgari, H. Wang, D. Maniezzo, L. Yip, R. Hudson, K. Yao, D. Estrin, IEEE Transactions on Mobile Computing3, 211 (2004).

    Article  Google Scholar 

  59. S. Ezhilvalavan, T. Tseng, Materials Chemistry and Physics65, 227 (2000).

    Article  CAS  Google Scholar 

  60. R.E. Jones, P. Zurcher, P. Chu et al., Microeletronic Engineering29, 11 (1995).

    Article  Google Scholar 

  61. http://www.iapplianceweb.com/story/oeg20030624 s0046.htm

Download references

Author information

Authors and Affiliations

Authors

Additional information

The paper is dedicated to the memory of Prof. E.A. Ukshe who had supported the ideas of nanoionics in 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Despotuli, A.L., Andreeva, A.V. & Rambabu, B. Nanoionics of advanced superionic conductors. Ionics 11, 306–314 (2005). https://doi.org/10.1007/BF02430394

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430394

Keywords

Navigation