Skip to main content
Log in

Phylogenetic relationship among all living species of the genusBubalus based on DNA sequences of the cytochromeb gene

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The cytochromeb genes of all living species ofBubalus, including the river type and the swamp type of domestic buffaloes (Bubalus bubalis), were sequenced to clarify their phylogenetic relationships. These sequences were compared together with the African buffalo (Syncerus caffer) and banteng (Bos javanicus) sequences as an outgroup. Phylogenetic trees ofBubalus species based on the DNA sequences of the cytochromeb gene demonstrated that the tamaraw (Bubalus mindorensis), endemic to the Philippines, could be classified into the subgenusBubalus, not the subgenusAnoa. The divergence time between the lowland anoa (B. depressicornis) and the mountain anoa (B. quarlesi) was estimated at approximately 2.0 million years (Myr), which is almost the same as the coalescence time for theBubalus sequences. This large genetic distance supports the idea that the lowland anoa and the mountain anoa are different species. An unexpectedly large genetic distance between the river and the swamp type of domestic buffaloes suggests a divergence time of about 1.7 Myr, while the swamp type was noticed to have the closest relationship with the tamaraw (1.5 Myr). This result implies that the two types of domestic buffaloes have differentiated at the full species level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amano, T., Namikawa, T., and Suzuki, S. (1980). Genetic differences between swamp and river buffaloes in the electrophoretic variations of albumin and transferrin.Proc. Japan. Acad. 56463.

    Google Scholar 

  • Amano, T., Namikawa, T., Shotake, T., and Cyril, H. W. (1986). Blood protein polymorphisms of water buffaloes in Sri Lanka.Rep. Soc. Res. Native Livestock 11117.

    Google Scholar 

  • Amano, T., Miyakoshi, Y., Takada, T., Kikkawa, Y., and Suzuki, H. (1994). Genetic variants of ribosomal DNA and mitochondrial DNA between swamp and river buffaloes.Anim. Genet. 2529.

    Google Scholar 

  • Beintema, J. J. (1980). Primary structures of pancreatic ribonucleases fromBovidae; impala, Tomson's gazelle, nilgai and water buffalo.Biochim. Biophys. Acta 62189.

    Google Scholar 

  • Chikuni, K., Tabata, T., Saito, M., and Monma, M. (1994). Sequencing of mitochondrial cytochromeb genes for the identification of meat species.Anim. Sci. Technol. 65571.

    Google Scholar 

  • Di Berardino, D., and Iannuzzi, L. (1981). Chromosome banding homologies in swamp and Murrah buffalo.J. Hered. 72183.

    Google Scholar 

  • Dolan, J. M. (1965). Breeding of lowland anoa in the San Diego Zoological Garden.Z. Säugetierk. 30241.

    Google Scholar 

  • Felsenstein, J. (1993).PHYLIP (Phylogeny Inference Package), Version 3.5c distributed by the author, Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Fischer, H., and Ulbrich, F. (1968). Chromosome of Murrah buffalo and its crossbreds with Asiatic swamp buffalo (Bubalus bubalis).Z. Tierzücht. Züchtgsbiol. 84110.

    Google Scholar 

  • Groves, C. P. (1969). Systematics of the anoa (Mammalia, Bovidae).Beaufortia 171.

    Google Scholar 

  • Groves, C. P. (1976). The origin of the mammalian fauua of Sulawesi (Cerebes).Z. Säugetierk. 41201.

    Google Scholar 

  • Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochromeb gene of mammals.J. Mol. Evol. 32128.

    Google Scholar 

  • Kakoi, H., Namikawa, T., Takenaka, A., Takenaka, O., Amano, T., and Martojo, H. (1994). Divergence between the anoa of Sulawesi and the Asiatic water buffaloes, inferred from their complete amino acid sequences of hemoglobin β chains.Z. Zool. Syst. Evolut.-forsch. 321.

    Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.J. Mol. Evol. 16111.

    Google Scholar 

  • Klös, H.-G., and Wünschmann, A. (1972). The wild and domestic oxen. In Grzimek, B. (ed.),Grzimek's Animal Life Encyclopedia, Vol. 13. Mammals IV Van Nostrand Reinholt, New York, pp. 331–398.

    Google Scholar 

  • Lento, G. M., Hickson, R. E., Chambers, G. K., and Penny, D. (1995). Use of spectral analysis to test hypotheses on the origin of pinnipeds.Mol. Biol. Evol. 1228.

    Google Scholar 

  • Mason, I. L. (1974). Species, types and breeds. In Cockrill, W. R. (ed.),The Husbandry and Health of the Domestic Buffalo FAO, Rome, pp. 1–47.

    Google Scholar 

  • Momongan, V. G., and Walde, G. I. (1993). The behavioral pattern of tamaraws (Bubalus mindorensis Heude) in captivity during the dry and wet season, a study conducted under the Tamaraw Conservation Program, University of the Philippines at Los Baños, pp. 1–22.

  • Morin, A. P., Moore, J. J., Chakraborty, R., Jin, L., Goodall, J., and Woodruff, S. D. (1994). Kin selection, social structure, gene flow, and the evolution of chimpanzees.Science 2651193.

    Google Scholar 

  • Namikawa, T., Masangkay, J. S., Maeda, K.-I., Escalada, R. F., Hirunagi, K., and Momongan, V. G. (1995). External characters and karyotypes of the captive tamaraws,Bubalus (B.) mindorensis, at the Gene Pool in the island of Mindoro, Philippines.J. Anim. Genet. 2319.

    Google Scholar 

  • Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4406.

    Google Scholar 

  • Sambrook, J., Fritsch, F. E., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 9.14–9.23.

    Google Scholar 

  • Savage, D. E., and Russell, D. E. (1983).Mammalian Paleofaunas of the World Addison-Wesley, Reading, MA.

    Google Scholar 

  • Schreiber, A., Nötzold, G., and Held, M. (1993). Molecular and chromosomal evolution in anoas (Bovidae: Bubalus spec.).Z. Zool. Syst. Evolut.-forsch. 3164.

    Google Scholar 

  • Smith, F. M., and Patton, J. L. (1982). Variation in mitochondrial cytochromeb sequence in natural population of South American akodontine rodents (Muridae: Sigmodontinae).Mol. Biol. Evol. 885.

    Google Scholar 

  • Stanley, S. M. (1979).Macroevolution Freeman, San Francisco.

    Google Scholar 

  • Tanaka, K., Yamagata, T., Masangkay, J. S., Faruque, M. O., Dang, V.-B., Salundik, Mansjoer, S. S., Kawamoto, Y., and Namikawa, T. (1995). Nucleotide diversity of mitochondrial DNAs between the swamp and the river types of domestic water buffaloes,Bubalus bubalis, based on restriction endonuclease cleavage patterns.Biochem. Genet. 33137.

    Google Scholar 

  • Ulbrich, F., and Fischer, H. (1967). The chromosomes of the Asiatic buffalo (Bubalus bubalis) and the African buffalo (Syncerus caffer).Z. Tierzücht. Züchtgsbiol. 83219.

    Google Scholar 

  • Walker, E. P. (1975).Mammals of the World 3rd ed., The Johns Hopkins University Press, London, pp. 1424–1425.

    Google Scholar 

  • Zeuner, F. E. (1963).A History of Domesticated Animals Hutchinson, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Solis, C.D., Masangkay, J.S. et al. Phylogenetic relationship among all living species of the genusBubalus based on DNA sequences of the cytochromeb gene. Biochem Genet 34, 443–452 (1996). https://doi.org/10.1007/BF00570125

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00570125

Key words

Navigation