Skip to main content
Log in

Genome size and the proportion of repeated nucleotide sequence DNA in plants

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The reannealing kinetics of denatured DNA fragments from 23 species of higher plants have been studied, using hydroxylapatite chromatography to distinguish reannealed from single-stranded DNA. The 2C nuclear DNA contents of the species varied between 1.7 and 98 pg. The proportions of DNA in species with a nuclear DNA mass above 5 pg that reannealed with the kinetics of sequences present in more than 100 copies were high (69–92% with a mean of 80±2.0%). For species with less than 4 pg of DNA, the mean proportion of repeated-sequence DNA was 62±2.9%. It is concluded that most of the variation in nuclear DNA mass in higher plant chromosomes can be accounted for by variation in repeated-sequence DNA. The consequences of altering the adapted DNA content of a species by the addition of families of repeated sequences are discussed in relation to the proportion of repeated-sequence DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, S., and Gibson, I. (1972). Genome amplification and gene expression in the ciliate macronucleus. Biochem. Genet. 6293.

    Google Scholar 

  • Bachmann, K., Goin, O. B., and Goin, C. J. (1972). Nuclear DNA amounts in vertebrates. Brookhaven Symp. Biol. 23419.

    Google Scholar 

  • Bennett, M. D. (1972). Nuclear DNA content and minimum generation time in herbaceous plants. Proc. Royal Soc. Lond. Ser. B 181109.

    Google Scholar 

  • Bennett, M. D., and Smith, J. B. (1972). The effects of polyploidy on meiotic duration and pollen development in cereal anthers. Proc. Royal Soc. Lond. Ser. B 18181.

    Google Scholar 

  • Bolton, E. T., Britten, R. J., Cowie, D. B., Roberts, R. B., Szafranski, P., and Waring, M. J. (1965). Interactions of nucleic acids. Carnegie Inst. Year Book 64 314.

    Google Scholar 

  • Bonner, J., and Wu, J. R. (1973). A proposal for the structure of the Drosophila genome. Proc. Natl. Acad. Sci. 70535.

    Google Scholar 

  • Britten, R. J. (1972). DNA sequence interspersion and a speculation about evolution. Brookhaven Symp. Biol. 2380.

    Google Scholar 

  • Britten, R., and Kohne, D. (1968). Repeated sequences in DNA. Science 161529.

    Google Scholar 

  • Britten, R. J., and Smith, J. (1970). A bovine genome. Carnegie Inst. Year Book 68378.

    Google Scholar 

  • Burgi, E., and Hershey, A. D. (1963). Sedimentation rate as a measure of molecular weight of DNA. Biophys. J. 3309.

    Google Scholar 

  • Chooi, W. Y. (1971). Comparison of the DNA of six Vicia species by the method of DNA-DNA hybridisation. Genetics 68213.

    Google Scholar 

  • Christiansen, C., Lethbak, A., Stenderup, A., and Christiansen, G. (1971). Repetitive DNA in yeasts. Nature New Biol. 231176.

    Google Scholar 

  • Cullis, C. A. (1973). DNA differences between flax genotrophs. Nature 243515.

    Google Scholar 

  • Davidson, E. H., Hough, B. R., Amenson, C. S., and Britten, R. J. (1973). General interspersion of repetitive with non repetitive sequence elements in the DNA of Xenopus. J. Mol. Biol. 771.

    Google Scholar 

  • Flamm, W. G. (1972). Highly repetitive sequences of DNA in chromosomes. Internat. Rev. Cytol. 322.

    Google Scholar 

  • Fry, K., Poon, R., Whitcome, P., Idriss, J., Salsar, W., Mazrimas, J., and Hatch, F. (1973). Nucleotide sequence of HS-β satellite DNA from kangaroo rat Dipodomys ordii. Proc. Natl. Acad. Sci. 702642.

    Google Scholar 

  • Ingle, J., Pearson, G. C., Sinclair, J. (1973). Species distribution and properties of nuclear satellite DNA in higher plants. Nature New Biol. 242193.

    Google Scholar 

  • Kram, R., Botcham, M., and Hearst, J. E. (1972). Arrangement of the highly reiterated sequences in the centric heterochromatin of Drosophila melanogaster: Evidence for interspersed spacer DNA. J. Mol. Biol. 64103.

    Google Scholar 

  • Laird, C. D. (1971). Chromatid structure: Relationship between DNA content and nucleosequence diversity. Chromosoma (Berl.) 32378.

    Google Scholar 

  • Laird, C. D., and McCarthy, B. J. (1969). Molecular characterization of the Drosophila genome. Genetics 63865.

    Google Scholar 

  • Macgregor, H. C., Horner, H., Owen, C. A., and Parker, I. (1973). Observations on centromeric heterochromatin and satellite DNA in salamanders of the genus Plethodon. Chromosoma (Berl.) 43329.

    Google Scholar 

  • Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3208.

    Google Scholar 

  • McCarthy, B. J., and Farquhar, M. N. (1972). The rate of change of DNA in evolution. Brookhaven Symp. Biol. 231.

    Google Scholar 

  • Miller, L., and Brown, D. D. (1969). Variation in the activity of nucleolar organizers and their ribosomal gene content. Chromosoma (Berl.) 28430.

    Google Scholar 

  • Pardue, M. L., and Gall, J. G. (1970). Chromosomal localization of mouse satellite DNA. Science 1681356.

    Google Scholar 

  • Rees, H. (1972). DNA in higher plants. Brookhaven Symp. Biol. 23394.

    Google Scholar 

  • Rees, H., and Jones, R. N. (1972). The origin of the wide species variation in nuclear DNA content. Internat. Rev. Cytol. 3253.

    Google Scholar 

  • Rice, N. R. (1972). Change in repeated sequence DNA in evolution. Brookhaven Symp. Biol. 2344.

    Google Scholar 

  • Sachs, R. I., and Clever, U. (1972). Unique and repetitive DNA sequences in the genome of Chironomus tentans. Exptl. Cell Res. 74587.

    Google Scholar 

  • Santiago, L., and Rake, A. V. (1973). Rodent DNA reassociation kinetics. Biochem. Genet. 9275.

    Google Scholar 

  • Smith, D. B., and Flavell, R. B. (1974). The relatedness and evolution of repeated nucleotide sequences in the genomes of some Gramineae species. Biochem. Genet. 12243.

    Google Scholar 

  • Southern, E. M. (1970). Base sequence and evolution of guinea-pig α-satellite DNA. Nature 227794.

    Google Scholar 

  • Sparrow, A. H., Price, H. J., and Underbrink, A. G. (1972). A survey of DNA content per cell and per chromosome of procaryotic and eucaryotic organisms: Some evolutionary considerations. Brookhaven Symp. Biol. 23451.

    Google Scholar 

  • Stebbins, G. L. (1963). Variation and Evolution in Plants, Columbia University Press, New York.

    Google Scholar 

  • Stebbins, G. L. (1971). Chromosomal Evolution in Higher Plants, Arnold, London.

    Google Scholar 

  • Straus, N. A. (1971). Comparative DNA renaturation kinetics in amphibians. Proc. Natl. Acad. Sci. 68799.

    Google Scholar 

  • Studier, F. W. (1965). Sedimentation studies of the size and shape of DNA. J. Mol. Biol. 11373.

    Google Scholar 

  • Sutton, W. D., and McCallum, M. (1971). Mismatching and the reassociation rate of mouse satellite DNA. Nature New Biol. 23283.

    Google Scholar 

  • Wu, J. R., Hurn, J., and Bonner, J. (1972). Size and distribution of the repetitive segments of the Drosophila genome. J. Mol. Biol. 64211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flavell, R.B., Bennett, M.D., Smith, J.B. et al. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12, 257–269 (1974). https://doi.org/10.1007/BF00485947

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00485947

Key words

Navigation