Skip to main content

Simulating the effect of quarantine on the spread of the 1918–19 flu in Central Canada

Abstract

Quarantine is often proposed and sometimes used to control the spread of infectious diseases through a human population. Yet there is usually little or no information on the effectiveness of attempting to quarantine humans that is not of an anecdotal or conjectural nature. This paper describes how a compartmental model for the geographic spread of infectious diseases can be used to address the potential effectiveness of human quarantine. The model is applied to data from the historical record in central Canada around the time of the 1918–19 influenza epidemic. Information on the daily mobility patterns of individuals engaged in the fur trade throughout the region prior to, during, and immediately after the epidemic are used to determine whether rates of travel were affected by informal quarantine policies imposed by community leaders. The model is then used to assess the impact of observed differences in travel on the spread of the epidemic. Results show that when mobility rates are very low, as in this region, quarantine practices must be highly effective before they alter disease patterns significantly. Simulation results suggest, though, that effectiveness varies depending on when the limitation on travel between communities is implemented and how long it lasts, and that a policy of introducing quarantine at the earliest possible time may not always lead to the greatest reduction in cases of a disease.

This is a preview of subscription content, access via your institution.

References

  1. Barry, M. (2000). Effect of the U.S. embargo and economic decline on health in Cuba. Ann. Int. Med. 132, 151–154.

    Google Scholar 

  2. Blower, S. M., P. M. Small and P. C. Hopewell (1996). Control strategies for tuberculosis epidemics: new models for old problems. Science 273, 497–500.

    Google Scholar 

  3. Blythe, S. P. and C. Castillo-Chavez (1989). Like-with-like preference and sexual mixing models. Math. Biosci. 96, 221–238.

    Article  MATH  Google Scholar 

  4. Brewer, T. F., S. J. Heymann, G. A. Colditz, M. E. Wilson, K. M. S. Auerbach, D. Kane and H. V. Fineberg (1996). Evaluation of tuberculosis control policies using computer simulation. JAMA 276, 1898–1903.

    Article  Google Scholar 

  5. Chan, M. S., M. Bradley and D. A. P. Bundy (1997). Transmission patterns and the epidemiology of hookworm infection. Int. J. Epidemiol. 26, 1392–1400.

    Article  Google Scholar 

  6. Charles, A. D. (1977). The influenza pandemic of 1918–1919: Columbia and South Carolina’s response. J. South Carolina Med. Assoc. 73, 367–370.

    Google Scholar 

  7. Chin, J. (Ed.) (2000). Control of Communicable Diseases Manual, 17th edn, Washington, DC: The American Public Health Association.

    Google Scholar 

  8. Crosby, A. W. (1989). America’s Forgotten Pandemic: The Influenza of 1918, Cambridge: Cambridge University Press.

    Google Scholar 

  9. Dickin McGinnis, J. P. (1977). The impact of epidemic influenza. Canada, 1918–1919. Can. Hist. Assoc. 19, 122–124.

    Google Scholar 

  10. Dorolle, P. (1968). Old plagues in the jet age: international aspects of present and future control of communicable disease. Br. Med. J. 4, 789–792.

    Article  Google Scholar 

  11. Elbers, A. R. W., A. Stegeman, H. Moser, H. M. Ekker, J. A. Smak and F. H. Pluimers (1999). The classical swine fever epidemic 1997–1998 in the Netherlands: descriptive epidemiology. Prev. Vet. Med. 42, 157–184.

    Article  Google Scholar 

  12. Ferguson, N. M., C. A. Donnelly and R. M. Anderson (2001). Transmission intensity and impact of control policies on the foot and mouth epidemic of Great Britain. Nature 413, 542–548.

    Article  Google Scholar 

  13. Gammaitoni, L. and M. C. Nucci (1997). Using a mathematical model to evaluate the efficacy of TB control measures. Emerg. Infect. Dis. 3, http://www.cdc.gov/ncidod/eid/vol3no3/nucci.htm.

  14. Garnett, G. P. (1998). The influence of behavioural heterogeneity on the population level effect of potential prophylactic type 1 human immunodeficiency virus vaccines. J. R. Stat. Soc. A 161, 209–225.

    Article  Google Scholar 

  15. Garnett, G. P. and R. M. Anderson (1995). Strategies for limiting the spread of HIV in developing countries: conclusions based on studies of the transmission dynamics of the virus. J. AIDS 9, 500–513.

    Google Scholar 

  16. Government of Canada (1917). Sessional Paper No. 27, George V (9–10), 18–19.

    Google Scholar 

  17. Graham-Cummings, G. (1967). Health of the original Canadians, 1867–1967. Med. Serv. J. Canada 23, 115–166.

    Google Scholar 

  18. Graves, C. (1969). Invasion by Virus, London: Icon Books.

    Google Scholar 

  19. Gupta, S., R. M. Anderson and R. M. May (1989). Networks of sexual contacts: implications for the pattern of spread of HIV. AIDS 3, 807–817.

    Google Scholar 

  20. Hardy, A. (1993). Cholera, quarantine, and the English preventive system, 1850–1895. Med. Hist. 37, 250–269.

    Google Scholar 

  21. Harris, R. C. (1987). Historical Atlas of Canada, Vol. I, Toronto: University of Toronto Press.

    Google Scholar 

  22. HBCA (Hudson’s Bay Company Archives, Winnipeg, Manitoba) 1917–1922. HBCA B.283/a/8, God’s Lake Post Journal.

  23. HBCA (Hudson’s Bay Company Archives, Winnipeg, Manitoba) 1918–1923. HBCA B.154/a/87, Norway House Post Journal.

  24. HBCA (Hudson’s Bay Company Archives, Winnipeg, Manitoba) 1918–1922. HBCA B.156/a/44, Oxford House Post Journal.

  25. Herda, P. S. (2000). Disease and the colonial narrative: the 1918 influenza pandemic in western Polynesia. N. Z. J. Hist. 34, 133–144.

    Google Scholar 

  26. Herring, D. A. (1994a). “There were young people and old people and babies dying every week”: the 1918–1919 influenza pandemic at Norway House. Ethnohistory 41, 73–105.

    Google Scholar 

  27. Herring, D. A. (1994b). The 1918 influenza epidemic in the central Canadian subarctic, in Strength in Diversity: A Reader in Physical Anthropology, A. Herring and L. Chan (Eds), Toronto: Canadian Scholars’ Press, pp. 365–384.

    Google Scholar 

  28. Herring, D. A. (2000). Mundane diseases can kill: the 1918 influenza pandemic in Canada. J. Ont. Occup. Health. Nurs. Assn. 19, 6–11.

    Google Scholar 

  29. Herring, D. A. and L. Sattenspiel (2002). Death in winter: the Spanish flu in the Canadian subarctic, in The Spanish Flu Epidemic of 1918: New Perspectives, H. Phillips and D. Killingray (Eds), London: Routledge, (in press).

    Google Scholar 

  30. Hethcote, H. W. and J. A. Yorke (1984). Gonorrhea Transmission and Control, Lecture Notes in Biomathematics 56, New York: Springer.

    MATH  Google Scholar 

  31. Hyman, J. M. and E. A. Stanley (1988). Using mathematical models to understand the AIDS epidemic. Math. Biosci. 90, 415–474.

    MathSciNet  Article  MATH  Google Scholar 

  32. Jacquez, J. A., C. Simon, J. Koopman, L. Sattenspiel and T. Perry (1988). Modeling and the analysis of HIV transmission: the effect of contact patterns. Math. Biosci. 92, 119–199.

    MathSciNet  Article  MATH  Google Scholar 

  33. Jalvingh, A. W., M. Nielen, H. Maurice, A. J. Stegeman, A. R. W. Elbers and A. A. Dijkhuizen (1999). Spatial and stochastic simulation to evaluate the impact of events and control measures on the 1997–1998 classical swine fever epidemic in The Netherlands. I. Description of the simulation model. Prev. Vet. Med. 42, 271–295.

    Article  Google Scholar 

  34. Keeling, M. J. and C. A. Gilligan (2000). Metapopulation dynamics of bubonic plague. Nature 407, 903–906.

    Article  Google Scholar 

  35. Keeling, M. J., M. E. J. Woolhouse, D. J. Shaw, L. Matthews, M. Chase-Topping, D. T. Haydon, S. J. Cornell, J. Kappey, J. Wilesmith and B. T. Grenfell (2001). Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science 294, 813–817. http://www.sciencemag.org/cgi/content/full/1065973/DC1/1.

    Article  Google Scholar 

  36. Kelm, M. E. (1998). First Nations’ perspectives on the influenza pandemic of 1918–1919. Paper presented at The Spanish Flu Pandemic after 80 Years—Reflections on the Influenza Pandemic of 1918–1919, Cape Town, South Africa.

  37. Lerner, B. H. (1996). Temporarily detained: tuberculosis alcoholics in Seattle, 1949 through 1960. Am. J. Publ. Health 86, 257–265.

    Google Scholar 

  38. Lesse, S. (1989). The concept of quarantine—is it still viable? Am. J. Psychother. XLII, 335–337.

    Google Scholar 

  39. MacDougall, H. (1985). The fatal flu. Horizon Canada 8, 2089–2095.

    Google Scholar 

  40. MacKenzie, K. and S. C. Bishop (2001). Developing stochastic epidemiological models to quantify the dynamics of infectious diseases in domestic livestock. J. Anim. Sci. 79, 2047–2056.

    Google Scholar 

  41. Mamelund, S.-E. (1998). Estimating the death toll of Spanish influenza 1918–19: the case of Norway. Paper presented at The Spanish Flu Pandemic after 80 Years—Reflections on the Influenza Pandemic of 1918–1919, Cape Town, South Africa.

  42. Markel, H. (1997). QUARANTINE! East European Jewish Immigrants and the New York City Epidemics of 1892, Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  43. Mativinovic, J. (1969). A short history of quarantine. U. Mich. Med. J. 35, 224–228.

    Google Scholar 

  44. McQueen, H. (1975). Spanish flu 1919: political, medical, and social aspects. Med. J. Aust. 1, 565–570.

    Google Scholar 

  45. Miller, J. M. (1993). Vignette of medical history: Lazaretto Point. Md. Med. J. 42, 1123–1125.

    Google Scholar 

  46. Murray, C. J. L. and J. A. Salomon (1998). Modeling the impact of global tuberculosis control strategies. PNAS 95, 13881–13886.

    Google Scholar 

  47. Musambachime, M. C. (1993). The influenza epidemic of 1918–1919 in northern Rhodesia. Zambia J. Hist. 6–7, 46–73.

    Google Scholar 

  48. Musto, D. F. (1988). Quarantine and the problem of AIDS, in AIDS: The Burdens of History, E. Fee and D. M. Fox (Eds), Los Angeles: University of California Press, pp. 67–84.

    Google Scholar 

  49. Nielen, M., A.W. Jalvingh, M. P. M. Meuwissen, S. H. Horst and A. A. Dijkhuizen (1999). Spatial and stochastic simulation to evaluate the impact of events and control measures on the 1997–1998 classical swine fever epidemic in The Netherlands. II. Comparison of control strategies. Prev. Vet. Med. 42, 297–317.

    Article  Google Scholar 

  50. Ohadike, D. C. (1991). Diffusion and physiological responses to the influenza pandemic of 1918–19 in Nigeria. Soc. Sci. Med. 32, 1393–1399.

    Article  Google Scholar 

  51. Over Four Hundred New Cases of Flu (1918). Manitoba Free Press, 12.

  52. Patterson, K. D. (1983). The influenza epidemic of 1918 in the Gold Coast. J. Afr. Hist. 24, 485–502.

    Article  Google Scholar 

  53. Patterson, K. D. (1986). Pandemic Influenza 1700–1900, Totowa, NJ: Rowman & Littlefield.

    Google Scholar 

  54. Phillips, H. and D. Killingray (2002). The Spanish Flu Epidemic of 1918: New Perspectives, London: Routledge.

    Google Scholar 

  55. Pluimers, F. H., P. W. de Leeuw, J. A. Smak, A. R. W. Elbers and J. A. Stegeman (1999). Classical swine fever in The Netherlands 1997–1998: a description of organisation and measures to eradicate the disease. Prev. Vet. Med. 42, 139–155.

    Article  Google Scholar 

  56. Reddi, S. (1998). War, influenza, and public health: a case study of the influenza of 1919 in Mauritius. Paper presented at The Spanish Flu Pandemic after 80 Years—Reflections on the Influenza Pandemic of 1918–1919, Cape Town, South Africa.

  57. Rice, G. W. (1998). Japan and New Zealand in the 1918 influenza pandemic: comparative perspectives on responses and crisis management. Paper presented at The Spanish Flu Pandemic after 80 Years—Reflections on the Influenza Pandemic of 1918–1919, Cape Town, South Africa.

  58. Rice, G. W. and E. Palmer (1993). Pandemic influenza in Japan, 1918–19: mortality patterns and official responses. J. Japan. Stud. 19, 389–420.

    Article  Google Scholar 

  59. Risse, G. B. (1992). Revolt against quarantine: community responses to the 1916 polio epidemic, Oyster Bay, New York. Trans. Stud. Col. Phys. Philadelphia 14, 23–50 (Series 5).

    Google Scholar 

  60. Sattenspiel, L. and K. Dietz (1995). A structured epidemic model incorporating geographic mobility among regions. Math. Biosci. 128, 71–91.

    Article  MATH  Google Scholar 

  61. Sattenspiel, L. and D. A. Herring (1998). Structured epidemic models and the spread of influenza in the Norway House District of Manitoba. Can. Hum. Biol. 70, 91–115.

    Google Scholar 

  62. Sattenspiel, L., A. Mobarry and D. A. Herring (2000). Modeling the influence of settlement structure on the spread of influenza. Am. J. Hum. Biol. 12, 736–748.

    Article  Google Scholar 

  63. Spencer, F. (1967). Port health services through the ages. R. Inst. Publ. Health Hyg. J. 30, 88–91.

    Google Scholar 

  64. Stegeman, A., A. R. W. Elbers, J. Smak and M. C. M. de Jong (1999). Quantification of the transmission of classical swine fever virus between herds during the 1997–1998 epidemic in The Netherlands. Prev. Vet. Med. 42, 219–234.

    Article  Google Scholar 

  65. van Hartesveldt, F. R. (Ed.) (1992a). Introduction, in The 1918–1919 Pandemic of Influenza: The Urban Impact in the Western World, Lewiston, NY: The Edwin Mellen Press, pp. 1–12.

  66. van Hartesveldt, F. R. (Ed.) (1992b). The 1918–1919 Pandemic of Influenza: The Urban Impact in the Western World, Lewiston, NY: The Edwin Mellen Press.

    Google Scholar 

  67. Van Nes, A., M. C. M. de Jong, J. A. A. M. Buijtels and J. H. M. Verheijden (1998). Implications derived from a mathematical model for eradication of pseudorabies virus. Prev. Vet. Med. 33, 39–58.

    Article  Google Scholar 

  68. Wakimura, K. (1998). The Indian experience of influenza pandemic 1918–19: why the mortality was so huge? Paper presented at The Spanish Flu Pandemic after 80 Years—Reflections on the Influenza Pandemic of 1918–1919, Cape Town, South Africa.

  69. Walters, J. H. (1978). Influenza 1918: the contemporary perspective. Bull. N. Y. Acad. Med. 54, 855–864.

    Google Scholar 

  70. Wetmore, F. H. (1919). Treatment of influenza. Can. Med. Assoc. J. 9, 1075–1080.

    Google Scholar 

  71. Whitelaw, T. H. (1919). The practical aspects of quarantine for influenza. Can. Med. Assoc. J. 9, 1070–1074.

    Google Scholar 

  72. Wygant, L. J. (1986). The Galveston quarantine stations, 1853–1950. Texas Med. 82, 49–52.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lisa Sattenspiel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sattenspiel, L., Herring, D.A. Simulating the effect of quarantine on the spread of the 1918–19 flu in Central Canada. Bull. Math. Biol. 65, 1–26 (2003). https://doi.org/10.1006/bulm.2002.0317

Download citation

Keywords

  • Epidemic Model
  • Classical Swine Fever Virus
  • Classical Swine Fever
  • Infectious Individual
  • Epidemic Peak