Skip to main content

Advertisement

Log in

Human haematopoiesis in steady state and following intense perturbations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Haematopoiesis is comprised of multiple stages, originating from pluripotent stem cells through intermediate progenitors to mature differentiated cells. Consequently, during the development of blood cells numerous sites are potentially exposed to the intense perturbations induced by anticancer chemotherapy. However, little is known about human haematopoietic stem cell kinetics in health and following cytotoxic perturbations. Here we reconstruct the complex in vivo dynamics of haematopoietic populations, including the elusive pluripotent stem cells, with a detailed mathematical representation of the marrow biology. The bone marrow kinetic parameters were estimated by using white blood cell counts routinely collected in patients during high dose chemotherapy (HDCT) followed by autologous peripheral blood stem cell transplantation and granulocyte colony stimulating factor (G-CSF) injections. Studying the model performance under a wide variety of parameter values reveals that bone marrow is surprisingly robust in the physiologically feasible parameter space. We infer that the human haematopoietic pluripotent stem cell density is approximately 1 in 2 · 105 mononuclear cells and that most of these cells are quiescent, dividing once in 3–4 weeks. Our results suggest that the re-infused stem cell content is relatively high (104 kg−1 or 1/300 of CD34+ cells) which contributes to both the long-term marrow re-population as well as to short-term support. This study implies that, in most patients, the pluripotent population recovers within 4 months following HDCT. The proposed model accurately predicts the bone marrow dynamics over a wide range of perturbations caused by clinical interventions. It provides valuable insights about the haematopoietic regeneration capacity, predicts the effect of G-CSF manipulation and of ex vivo graft expansion in improving transplantation procedures, and may have implications for effective stem cell gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abkowitz, J. L., S. N. Catlin and P. Guttorp (1996). Evidence that hematopoiesis may be a stochastic process in vivo. Nat. Med. 2, 190–197.

    Article  Google Scholar 

  • Abonour, R., D. A. Williams, L. Einhorn, K. M. Hall, J. Chen, J. Coffman et al. (2000). Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat. Med. 6, 652–658.

    Article  Google Scholar 

  • Akashi, K., D. Traver, T. Miyamoto and I. L. Weissman (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197.

    Article  Google Scholar 

  • Antman, K., L. Ayash, A. Elias, C. Wheeler, M. Hunt, J. P. Eder et al. (1992). A phase II study of high-dose cyclophosphamide, thiotepa, and carboplatin with autologous marrow support in women with measurable advanced breast cancer responding to standard-dose therapy. Clin. J. Oncol. 10, 102–110.

    Google Scholar 

  • Begley, C. G., N. A. Nicola and D. Metcalf (1988). Proliferation of normal human promyelocytes and myelocytes after a single pulse stimulation by purified GM-CSF or G-CSF. Blood 71, 640–645.

    Google Scholar 

  • Berardi, A. C., A. Wang, J. D. Levine, P. Lopez and D. T. Scadden (1995). Functional isolation and characterization of human hematopoietic stem cells. Science 267, 104–108.

    Google Scholar 

  • Bonilla, M. A., A. P. Gillio, M. Ruggeiro, N. A. Kernan, J. A. Brochstein, M. Abboud et al. (1989). Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N. Engl. J. Med. 320, 1574–1580.

    Article  Google Scholar 

  • Bronchud, M. H., M. R. Potter, G. Morgenstern, M. J. Blasco, J. H. Scarffe, N. Thatcher et al. (1988). In vitro and in vivo analysis of the effects of recombinant human granulocyte colony-stimulating factor in patients. Br. J. Cancer 58, 64–69.

    Google Scholar 

  • Clough, G. A. (1987). Quantitative study of the exchange microvasculature of muscles from the human foot and hand. Int. J. Microcirc. Clin. Exp. 6, 237–243.

    Google Scholar 

  • Cowan, K. H., J. A. Moscow, H. Huang, J. A. Zujewski, J. O’Shaughnessy, B. Sorrentino et al. (1999). Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin. Cancer Res. 5, 1619–1628.

    Google Scholar 

  • Cronkite, E. P. (1979). Kinetics of granulocytopoiesis. Clin. Haematol. 8, 351–370.

    Google Scholar 

  • Duhrsen, U., J. L. Villeval, J. Boyd, G. Kannourakis, G. Morstyn and D. Metcalf (1988). Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72, 2074–2081.

    Google Scholar 

  • Engelhardt, M., R. Kumar, J. Albanell, R. Patengel, W. Han and A. S. M. Malcolm (1997). Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 90, 182–193.

    Google Scholar 

  • Fruehauf, S., M. R. Veldwijk, A. Kramer, R. Haas and W. J. Zeller (1998). Delineation of cell cycle state and correlation to adhesion molecule expression of human CD34+ cells from steady-state bone marrow and peripheral blood mobilized following G-CSF-supported chemotherapy. Stem Cells 16, 271–279.

    Article  Google Scholar 

  • Furth, V. R., J. A. Raeburn and T. L. von Zwet (1979). Characteristics of human mononuclear phagocytes. Blood 54, 485–500.

    Google Scholar 

  • Hao, Q. L., F. T. Thiemann, D. Petersen, E. M. Smogorzewska and G. M. Crooks (1996). Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 88, 3306–3313.

    Google Scholar 

  • Haurie, C., D. C. Dale and M. C. Mackey (1998). Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood 92, 2629–2640.

    Google Scholar 

  • Ho, D. D., A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard and M. Markowitz (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126.

    Article  Google Scholar 

  • Hoffman, R. (1999). Progress in the development of systems for in vitro expansion of human hematopoietic stem cells. Curr. Opin. Hematol. 6, 184–191.

    Article  Google Scholar 

  • Jackson, K. A., S. M. Majka, H. Wang, J. Pocius, C. J. Hartley, M. W. Majesky et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402.

    Google Scholar 

  • Jason, M., B. S. Andrews, M. Colvin and G. J. Friou (1984). In vitro effects of 4-hydroperoxycyclophosphamide on the morphology and function of human peripheral blood mononuclear phagocytic cells (macrophages). Cancer Res. 44, 3936–3941.

    Google Scholar 

  • Kasper, C., W. D. Ryder, J. Duri, K. Nagesh, J. H. Scarfee, D. W. Beelen et al. (1999). Content of long term culture-initiating cells, clonogenic progenitors and CD34 cells in apheresis harvest of normal donors for allogeneic transplantation, and in patients with acute myeloid leukaemia or myeloma. Br. J. Haematol. 104, 374–381.

    Article  Google Scholar 

  • Killmann, S. A., E. P. Cronkite, V. P. Bond and T. M. Fliedner (1961). Acute radiation effects on man revealed by unexpected exposures, Diagnosis and Treatment of Acute Radiation Injury, Geneva: International Atomic Energy Agency, World Health Organization, pp. 151–164.

    Google Scholar 

  • Killmann, S. A., E. P. Cronkite, T. M. Fliedner and V. P. Bond (1964). Mitotic indices of human bone marrow cells 3. Duration of some phases of erythrocytic and granulocytic proliferation computed from mitotic indices. Blood 24, 267–280.

    Google Scholar 

  • Kiss, J. E., W. B. Rybka, A. Winkelstein, M. de Magalhaes-Silverman, J. Lister, P. D’Andrea et al. (1997). Relationship of CD34+ cell dose to early and late hematopoiesis following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 19, 303–310.

    Article  Google Scholar 

  • Kohn, D. B., G. Bauer, C. R. Rice, J. C. Rothschild, D. A. Carbonaro, P. Valdez et al. (1999). A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 94, 368–371.

    Google Scholar 

  • Lentner, C. (1984). CIBA-Geigy Scientific Tables, 8th edn., Vol. 3, West Caldwell, NJ.

  • Lieschke, G. J., D. Grail, G. Hodgson, D. Metcalf, E. Stanley, E. Cheers et al. (1994). Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746.

    Google Scholar 

  • Lindemann, A., F. Herrmann, W. Ostler et al. (1989). Hematological effects of recombinant human granulocyte colony-stimulating factor in patients with malignancy. Blood 74, 2644–2651.

    Google Scholar 

  • Lord, B. I., M. H. Bronchud, S. Owens, J. Chang, A. Howell, L. Souza et al. (1989). The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc. Natl. Acad. Sci. USA 86, 9499–9503.

    Article  Google Scholar 

  • McKay, R. (2000). Stem cells—hype and hope. Nature 406, 361–364.

    Article  Google Scholar 

  • Meuret, G., E. Batara and H. O. Furste (1975). Monocytopoiesis in normal man: pool size, proliferation activity and DNA synthesis time of promonocytes. Acta Haematol. 54, 261–270.

    Article  Google Scholar 

  • Moore, M. A. (1991). Review: Stratton Lecture 1990. Clinical implications of positive and negative hematopoietic stem cell regulators. Blood 78, 1–19.

    Google Scholar 

  • Ogawa, M. (1993). Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853.

    Google Scholar 

  • Ojeda, E., J. Garcia-Bustos, M. Aguado, R. Arrieta, E. Quevedo, V. J. Yuste et al. (1999). A prospective randomized trial of granulocyte colony-stimulating factor therapy after autologous blood stem cell transplantation in adults. Bone Marrow Transplant. 24, 601–607.

    Article  Google Scholar 

  • Pecora, A. L., R. A. Preti, G. W. Gleim, A. Jennis, K. Zahos, S. Cantwell et al. (1998). CD34+CD33-cells influence days to engraftment and transfusion requirements in autologous blood stem-cell recipients. J. Clin. Oncol. 16, 2093–2104.

    Google Scholar 

  • Piao, Y. F. and T. Okabe (1990). Receptor binding of human granulocyte colony-stimulating factor to the blast cells of myeloid leukemia. Cancer Res. 50, 1671–1674.

    Google Scholar 

  • Punzel, M., S. D. Wissink, J. S. Miller, K. A. Moore, I. R. Leminschka and C. M. Verfaillie (1999). The myeloid-lymphoid initiating cell (ML-IC) assay assesses the fate of multipotent human progenitors in vitro. Blood 93, 3750–3756.

    Google Scholar 

  • Ratajczak, M. Z. and A. M. Gewirtz (1995). The biology of hematopoietic stem cells. Semin. Oncol. 22, 210–217.

    Google Scholar 

  • Sachs, L. (1992). The molecular control of haematopoiesis: from cell cultures to the clinic, in Molograstim GM-CSF: Possibilities and Perspectives, N. C. Gorin (Ed.), London: Royal Society of Medicine Services, pp. 3–11.

    Google Scholar 

  • Saltzman, W. M., M. W. Mak, M. J. Mahoney, E. T. Duenas and J. L. Cleland (1999). Intracranial delivery of recombinant nerve growth factor: release kinetics and protein distribution for three delivery systems. Pharmacol. Res. 16, 232–240.

    Article  Google Scholar 

  • Sato, T., J. H. Laver and M. Ogawa (1999). Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94, 2548–2554.

    Google Scholar 

  • Shaaban, A. F., H. B. Kim, R. Milner and A. W. Flake (1999). A kinetic model for the homing and migration of prenatally transplanted marrow. Blood 94, 3257.

    Google Scholar 

  • Shah, A. M. and G. K. Schwartz (2001). Cell cycle mediated drug resistance: an emerging concept in cancer therapy. Clin. Cancer Res. 7, 2168–2181.

    Google Scholar 

  • Shpall, E. J., R. B. Jones, S. I. Bearman, W. A. Franklin, P. G. Archer, T. Curiel et al. (1994). Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: influence of CD34-positive peripheral-blood progenitors and growth factors on engraftment. J. Clin. Oncol. 12, 28–36.

    Google Scholar 

  • Springer, M. L., T. R. Brazelton and H. M. Blau (2001). Not the usual suspects: the unexpected sources of tissue regeneration. J. Clin. Invest. 107, 1355–1356.

    Article  Google Scholar 

  • Stroncek, D. F., M. E. Clay, M. L. Petzolct, J. Smith, W. Jaszcz, F. B. Oldham and J. McCullough (1996). Treatment of normal individuals with granulocyte-colony-stimulating factor: donor experiences and the effects on peripheral blood CD34+ cell counts and on the collection of peripheral blood stem cells. Transfusion 36, 601–610.

    Article  Google Scholar 

  • Stute, N., V. M. Santana, J. H. Rodman, M. J. Schell, J. N. Ihle and W. E. Evans (1992). Pharmacokinetics of subcutaneous recombinant human granulocyte colony-stimulating factor in children. Blood 79, 2849–2854.

    Google Scholar 

  • Tidow, N., C. Pilz, B. Teichmann, A. Muller-Brechlin, M. Germeshausen, B. Kasper et al. (1997). Clinical relevance of point mutations in the cytoplasmic domain of the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Blood 89, 2369–2375.

    Google Scholar 

  • Valeriote, F. and V. L. Putten (1975). Proliferation dependent cytotoxicity of anticancer agents: a review. Cancer Res. 35, 2619–2630.

    Google Scholar 

  • Vaudaux, P., B. Kiefer, M. Forni, I. Joris, G. Majno and F. A. Waldvogel (1984). Adriamycin impairs phagocytic function and induces morphologic alterations in human neutrophils. Cancer 54, 400–410.

    Google Scholar 

  • Vaziri, H., W. Dragowska, R. C. Allsopp, T. E. Thomas, C. B. Harley and P. M. Lansdorp (1994). Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl. Acad. Sci. USA 91, 9857–9860.

    Article  Google Scholar 

  • Walpole, R. E. and R. H. Myers (1990). Probability and Statistics for Engineers and Scientists, New York: Macmillan, pp. 634–638.

    Google Scholar 

  • Wei, X., S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. A. Emini, P. Deutsch et al. (1995). Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122.

    Article  Google Scholar 

  • Wolfram, S. (1999). The Mathematica Book Ver. 4, Champaign, IL: Wolfram Research.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shochat, E., Stemmer, S.M. & Segel, L. Human haematopoiesis in steady state and following intense perturbations. Bull. Math. Biol. 64, 861–886 (2002). https://doi.org/10.1006/bulm.2002.0305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0305

Keywords

Navigation