Bulletin of Mathematical Biology

, Volume 64, Issue 3, pp 611–620 | Cite as

Complex discrete dynamics from simple continuous population models

  • Javier G. P. Gamarra
  • Ricard V. Solé
Article

Abstract

Nonoverlapping generations have been classically modelled as difference equations in order to account for the discrete nature of reproductive events. However, other events such as resource consumption or mortality are continuous and take place in the within-generation time. We have realistically assumed a hybrid ODE bidimensional model of resources and consumers with discrete events for reproduction. Numerical and analytical approaches showed that the resulting dynamics resembles a Ricker map, including the doubling route to chaos. Stochastic simulations with a handling-time parameter for indirect competition of juveniles may affect the qualitative behaviour of the model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blair, J. M. (1997). Fire frequency affects soil N availability and plant responses to subsequent fires in tallgrass prairie: a test of the transient maxima hypothesis. Ecology 78, 2359–2368.CrossRefGoogle Scholar
  2. Gurney, W. S. C., S. P. Blythe and R. M. Nisbet (1980). Nicholson’s blowflies revisited. Nature 287, 17–21.CrossRefGoogle Scholar
  3. Gurney, W. S. C. and R. M. Nisbet (1998). Ecological Dynamics, Oxford: Oxford University Press.Google Scholar
  4. Gyllenberg, M., I. Hanski and T. Lindstrom (1997). Continuous versus discrete single species population models with adjustable reproductive strategies. Bull. Math. Biol. 59, 679–705.CrossRefGoogle Scholar
  5. Hassell, M. P., J. H. Lawton and R. M. May (1976). Patterns of dynamical behaviour in single species populations. J. Anim. Ecol. 45, 471–486.Google Scholar
  6. Kuznetsov, Y. A., S. Muratori and S. Rinaldi (1992). Bifurcations and chaos in a periodically forced predator-prey model. Int. J. Bif. Chaos 2, 117–128.MathSciNetCrossRefGoogle Scholar
  7. Lande, R. (1987). Extinction thresholds in demographic models of territorial populations. Am. Nat. 130, 624–635.CrossRefGoogle Scholar
  8. Mackey, M. C. and L. Glass (1977). Oscillations and chaos in physiological control systems. Science 197, 287–289.Google Scholar
  9. May, R. M. (1974). Biological populations with non-overlapping generations: stable points, stable cycles and chaos. Science 186, 645–647.Google Scholar
  10. May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature 261, 459–467.CrossRefGoogle Scholar
  11. Noy-Meir, I. (1979). Structure and function of desert ecosystems. Isr. J. Bot. 28, 1–9.Google Scholar
  12. Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling (1993). Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edn, Cambridge, UK: Cambridge University Press.Google Scholar
  13. Ricker, W. E. (1954). Stock and recruitment. J. Fish. Res. Bd. Can. 11, 559–623.Google Scholar
  14. Solé, R. V., J. G. P. Gamarra, M. Ginovart and D. López (1999). Controlling chaos in ecology: from deterministic to individual-based models. Bull. Math. Biol. 61, 1187–1207.CrossRefGoogle Scholar
  15. Sumpter, D. J. T. and D. S. Broomhead (2001). Relating individual behaviour to population dynamics. Proc. R. Soc. Lond. B 268, 925–932.CrossRefGoogle Scholar
  16. Wilson, G. W. (1998). Resolving discrepancies between deterministic population models and individual-based simulations. Am. Nat. 151, 116–134.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2002

Authors and Affiliations

  • Javier G. P. Gamarra
    • 1
  • Ricard V. Solé
    • 1
    • 2
  1. 1.Complex Systems Research Group, Department of Physics FENUniversitat Politècnica de Catalunya, Campus Nord, Mòdul B4-B5BarcelonaSpain
  2. 2.Santa Fe InstituteSanta FeUSA

Personalised recommendations