Skip to main content
Log in

Replication and mutation on neutral networks

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Folding of RNA sequences into secondary structures is viewed as a map that assigns a uniquely defined base pairing pattern to every sequence. The mapping is non-invertible since many sequences fold into the same minimum free energy (secondary) structure or shape. The pre-images of this map, called neutral networks, are uniquely associated with the shapes and vice versa. Random graph theory is used to construct networks in sequence space which are suitable models for neutral networks.

The theory of molecular quasispecies has been applied to replication and mutation on single-peak fitness landscapes. This concept is extended by considering evolution on degenerate multi-peak landscapes which originate from neutral networks by assuming that one particular shape is fitter than all the others. On such a single-shape landscape the superior fitness value is assigned to all sequences belonging to the master shape. All other shapes are lumped together and their fitness values are averaged in a way that is reminiscent of mean field theory. Replication and mutation on neutral networks are modeled by phenomenological rate equations as well as by a stochastic birth-and-death model. In analogy to the error threshold in sequence space the phenotypic error threshold separates two scenarios: (i) a stationary (fittest) master shape surrounded by closely related shapes and (ii) populations drifting through shape space by a diffusion-like process. The error classes of the quasispecies model are replaced by distance classes between the master shape and the other structures.

Analytical results are derived for single-shape landscapes, in particular, simple expressions are obtained for the mean fraction of master shapes in a population and for phenotypic error thresholds. The analytical results are complemented by data obtained from computer simulation of the underlying stochastic processes. The predictions of the phenomenological approach on the single-shape landscape are very well reproduced by replication and mutation kinetics of tRNAphe. Simulation of the stochastic process at a resolution of individual distance classes yields data which are in excellent agreement with the results derived from the birth-and-death model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayala, F. J. (1997). Vagaries of the molecular clock. Proc. Natl. Acad. Sci. USA 94, 7776–7783.

    Article  Google Scholar 

  • Babajide, A., I. L. Hofacker, M. J. Sippl and P. F. Stadler (1997). Neutral networks in protein space: A computational study based on knowledge-based potentials of mean force. Folding Des. 2, 261–269.

    Article  Google Scholar 

  • Batey, R. T., R. P. Rambo and J. A. Doudna (1999). Tertiary motifs in structure and folding of RNA. Angew. Chem. Int. Ed. 38, 2326–2343.

    Article  Google Scholar 

  • Biebricher, C. K. and W. C. Gardiner (1997). Molecular evolution of RNA in vitro. Biophys. Chem. 66, 179–192.

    Article  Google Scholar 

  • Domingo, E. and J. J. Holland (1997). RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178.

    Article  Google Scholar 

  • Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523.

    Article  Google Scholar 

  • Eigen, M. (1993). The origin of genetic information. Viruses as models. Gene 135, 37–47.

    Article  Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster (1989). The molecular quasispecies. Adv. Chem. Phys. 75, 149–263.

    Google Scholar 

  • Eigen, M. and P. Schuster (1977). The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64, 541–565.

    Article  Google Scholar 

  • Elena, S. F., V. S. Cooper and R. E. Lenski (1996). Punctuated evolution caused by selection of rare beneficial mutations. Science 272, 1802–1804.

    Google Scholar 

  • Fontana, W., D. A. M. Konings, P. F. Stadler and P. Schuster (1993). Statistics of RNA secondary structures. Biopolymers 33, 1389–1404.

    Article  Google Scholar 

  • Fontana, W. and P. Schuster (1987). A computer model of evolutionary optimization. Biophys. Chem. 26, 123–147.

    Article  Google Scholar 

  • Fontana, W. and P. Schuster (1998a). Continuity in evolution. On the nature of transitions. Science 280, 1451–1455.

    Article  Google Scholar 

  • Fontana, W. and P. Schuster (1998b). Shaping space: The possible and the attainable in RNA genotype—phenotype mapping. J. Theor. Biol 194, 491–515.

    Article  Google Scholar 

  • Fontana, W., W. Schnabl and P. Schuster (1989). Physical aspects of evolutionary optimization and adaptation. Phys. Rev. A 40, 3301–3321.

    Article  Google Scholar 

  • Forst, C. V., C. Reidys and J. Weber (1995). Evolutionary dynamics and optimization: Neutral networks as model-landscapes for RNA secondary-structure folding-landscapes, Advances in Artificial Life, Lecture Notes in Artificial Intelligence 929, F. Morán, A. Moreno, J. J. Merelo and P. Chacón (Eds), Berlin: Springer-Verlag, pp. 128–147.

    Google Scholar 

  • Gardiner, C. W. (1985). Handbook of Stochastic Methods, 2nd edn, Berlin: Springer-Verlag.

    Google Scholar 

  • Gavrilets, S. (1997). Evolution and speciation on holey landscapes. Trends Ecol. Evol. 12, 307–312.

    Article  Google Scholar 

  • Gavrilets, S. and J. Gravner (1997). Percolation on the fitness hypercube and the evolution of reproductive isolation. J. Theor. Biol. 184, 51–64.

    Article  Google Scholar 

  • Gavrilets, S., H. Li and M. D. Voss (1998). Rapid parapatric speciation on holey adaptive landscapes. Proc. R. Soc. London B 265, 1483–1489.

    Article  Google Scholar 

  • (1993). The RNA World, R. F. Gesteland and J. F. Atkins (Eds), Plainview, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    Article  Google Scholar 

  • Göbel, U., C. V. Forst and P. Schuster (1997). Structural constraints and neutrality in RNA, Proceedings of the German Conference on Bioinformatics 1996, Lecture Notes in Computer Science 1278, R. Hofestädt, T. Lengauer, M. Löffler and D. Schomburg (Eds), Berlin: Springer-Verlag, pp. 156–165.

    Google Scholar 

  • Goel, N. S. and N. Richter-Dyn (1974). Stochastic Models in Biology, New York: Academic Press.

    Google Scholar 

  • Govindarajan, S. and R. A. Goldstein (1996). Why are some protein structures so common. Proc. Natl. Acad. Sci. USA 93, 3341–3345.

    Article  Google Scholar 

  • Govindarajan, S. and R. A. Goldstein (1997). The foldability landscape of model proteins. Biopolymers 42, 427–438.

    Article  Google Scholar 

  • Grüner, W., R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, P. F. Stadler and P. Schuster (1996a). Analysis of RNA sequence structure maps by exhaustive enumeration. I. Neutral networks. Mh. Chem. 127, 355–374.

    Google Scholar 

  • Grüner, W., R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, P. F. Stadler and P. Schuster (1996b). Analysis of RNA sequence structure maps by exhaustive enumeration. II. Structure of neutral networks and shape space covering. Mh. Chem. 127, 375–389.

    Google Scholar 

  • Higgs, P. G. (1998). Compensatory neutral mutations and the evolution of RNA. Genetica 102/103, 91–101.

    Article  Google Scholar 

  • Hofacker, I. L., W. Fontana, P. F. Stadler, S. Bonhoeffer, M. Tacker and P. Schuster (1994). Fast folding and comparison of RNA secondary structures. Mh. Chem. 125, 167–188.

    Google Scholar 

  • Hofacker, I. L., P. Schuster and P. F. Stadler (1998). Combinatorics of RNA secondary structures. Discrete Appl. Math. 89, 177–207.

    MathSciNet  Google Scholar 

  • Huynen, M. A., P. F. Stadler and W. Fontana (1996). Smoothness within ruggedness: The role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA 93, 397–401.

    Article  Google Scholar 

  • Jones, B. L., R. H. Enns and S. S. Rangnekar (1975). On the theory of selection of coupled macromolecular systems. Bull. Math. Biol. 38, 12–28.

    Google Scholar 

  • Karlin, S. and H. M. Taylor (1975). A First Course in Stochastic Processes, New York: Academic Press.

    MATH  Google Scholar 

  • Karlin, S. and H. M. Taylor (1981). A Second Course in Stochastic Processes, New York: Academic Press.

    MATH  Google Scholar 

  • Kimura, M. (1968). Evolutionary rate at the molecular level. Nature 217, 624–626.

    Google Scholar 

  • Kimura, M. (1983). The Neutral Theory of Molecular Evolution, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • King, J. L. and T. H. Jukes (1969). Non-Darwinian evolution: Random fixation of selectively neutral variants. Science 164, 788–798.

    Google Scholar 

  • McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. J. Appl. Probab. 4, 413–478.

    Article  MATH  MathSciNet  Google Scholar 

  • Moran, P. A. P. (1962). The Statistical Processes of Evolutionary Theory, Oxford, UK: Clarendon Press.

    MATH  Google Scholar 

  • Nowak, M. and P. Schuster (1989). Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol. 137, 375–395.

    Google Scholar 

  • Ohta, T. (1992). The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst. 23, 263–286.

    Article  Google Scholar 

  • Papadopoulos, D., D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski and M. Blot (1999). Genomic evolution during a 10 000-generation experiment with bacteria. Proc. Natl. Acad. Sci. USA 96, 3807–3812.

    Article  Google Scholar 

  • Reidys, C. M. (1997). Random induced subgraphs of generalized n-cubes. Adv. Appl. Math. 19, 360–377.

    Article  MATH  MathSciNet  Google Scholar 

  • Reidys, C., P. F. Stadler and P. Schuster (1997). Generic properties of combinatory maps—Neutral networks of RNA secondary structures. Bull. Math. Biol. 59, 339–397.

    Article  MATH  Google Scholar 

  • Schultes, E. A. and D. P. Bartel (2000). One sequence, two ribozymes: Implications for the emergence of new ribozyme folds. Science 289, 448–452.

    Article  Google Scholar 

  • Schuster, P. (1997a). Genotypes with phenotypes. adventures in an RNA toy world. Biophys. Chem. 66, 75–110.

    Article  Google Scholar 

  • Schuster, P. (1997b). Landscapes and molecular evolution. Physica D 107, 351–365.

    Article  MathSciNet  Google Scholar 

  • Schuster, P. (1997c). The role of neutral mutations in the evolution of RNA molecules, in Theoretical and Computational Methods in Genome Research, S. Suhai (Ed.), New York: Plenum Press, pp. 287–302.

    Google Scholar 

  • Schuster, P. (2000). Molecular insights into evolution of phenotypes, in Evolutionary Dynamics—Exploring the Interplay of Accident, Selection, Neutrality, and Function, J. P. Crutchfield and P. Schuster (Eds), New York: Oxford University Press.

    Google Scholar 

  • Schuster, P. and W. Fontana (1999). Chance and necessity in evolution: Lessons from RNA. Physica D 133, 427–452.

    Article  MathSciNet  Google Scholar 

  • Schuster, P., W. Fontana, P. F. Stadler and I. L. Hofacker (1994a). From sequences to shapes and back: A case study in RNA secondary structures. Proc. R. Soc.(London) B 255, 279–284.

    Google Scholar 

  • Schuster, P., W. Fontana, P. F. Stadler and I. L. Hofacker (1994b). From sequences to shapes and back: A case study in RNA secondary structures. Proc. R. Soc. Lond. B 255, 279–284.

    Google Scholar 

  • Schuster, P. and P. F. Stadler (2000). Discrete models of biopolymers, in Handbook of Computational Chemistry, M. J. C. Crabbe, M. Drew and A. Konopka (Eds), New York: Marcel Dekker, (pages in press).

    Google Scholar 

  • Schuster, P., P. F. Stadler and A. Renner (1997). RNA Structure and folding. From conventional to new issues in structure predictions. Curr. Opin. Struct. Biol. 7, 229–235.

    Article  Google Scholar 

  • Spiegelman, S. (1971). An approach to the experimental analysis of precellular evolution. Q. Rev. Biophys. 4, 213–253.

    Article  Google Scholar 

  • Stadler, P. F. (1995). Towards a theory of landscapes, in Complex Systems and Binary Networks, R. Lopéz-Peña, R. Capovilla, R. García-Pelayo, H. Waelbroeck and F. Zertuche (Eds), Berlin, New York: Springer Verlag, pp. 77–163.

    Google Scholar 

  • Swetina, J. and P. Schuster (1982). Self-replication with errors—A model for polynucleotide replication. Biophys. Chem. 16, 329–345.

    Article  Google Scholar 

  • Tacker, M., P. F. Stadler, E. G. Bornberg-Bauer, I. L. Hofacker and P. Schuster (1996). Algorithm independent properties of RNA secondary structure predictions. Eur. Biophys. J. 25, 115–130.

    Article  Google Scholar 

  • Thompson, C. J. and J. L. McBride (1974). On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math. Biosci. 21, 127–142.

    Article  MathSciNet  MATH  Google Scholar 

  • Waterman, M. S. (1978). Secondary structures of single stranded nucleic acids. Adv. Math. (Suppl. Studies) 1, 167–212.

    MATH  MathSciNet  Google Scholar 

  • Waterman, M. S. (1995). Introduction to Computational Biology: Maps, Sequences, and Genomes, Boca Raton, FL: Chapman & Hall.

    MATH  Google Scholar 

  • (1997). Evolutionary Biotechnology—From Theory to Experiment, A Special Issue of Biophys. Chem., Volume 66(2–3), A. Watts and G. Schwarz (Eds), Amsterdam: Elsevier.

    Google Scholar 

  • Wiehe, T. and P. Schuster Replication-mutation dynamics on different classes of fitness landscapes. Unpublished, 1997.

  • Wilson, D. S. and J. W. Szostak (1999). In Vitro selection of fuctional nucleic acids. Annu. Rev. Biochem. 68, 611–647.

    Article  Google Scholar 

  • Wuchty, S., W. Fontana, I. L. Hofacker and P. Schuster (1999). Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49, 145–165.

    Article  Google Scholar 

  • Zuckerkandl, E. (1997). Neutral and nonneutral mutations: The creative mix—Evolution of complexity in gene interaction systems. J. Mol. Evol. 44(Suppl.1), S2–S8.

    Article  Google Scholar 

  • Zuckerkandl, E. and L. Pauling (1965). Evolutionary divergence and convergence in proteins, in Evolving Genes and Proteins, V. Bryson and H. J. Vogel (Eds), New York: Academic Press, pp. 97–166.

    Google Scholar 

  • Zuker, M. and P. Stiegler (1981). Optimal computer folding of larger RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schuster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reidys, C., Forst, C.V. & Schuster, P. Replication and mutation on neutral networks. Bull. Math. Biol. 63, 57–94 (2001). https://doi.org/10.1006/bulm.2000.0206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0206

Keywords

Navigation