Skip to main content
Log in

Rate estimation for a simple movement model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper introduces a simple stochastic model for waterfowl movement. After outlining the properties of the model, we focus on parameter estimation. We compare three standard least squares estimation procedures with maximum likelihood (ML) estimates using Monte Carlo simulations. For our model, little is gained by incorporating information about the covariance structure of the process into least squares estimation. In fact, misspecifying the covariance produces worse estimates than ignoring heteroscedasticity and autocorrelation. We also develop a modified least squares procedure that performs as well as ML. We then apply the five estimators to field data and show that differences in the statistical properties of the estimators can greatly affect our interpretation of the data. We conclude by highlighting the effects of density on per capita movement rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, S. F. (1990). Mathematical Statistics, Englewood Hills, NJ: Prentice-Hall.

    Google Scholar 

  • Bailey, N. T. J. (1964). The Elements of Stochastic Processes, New York: John Wiley and Sons.

    Google Scholar 

  • Bard, Y. (1974). Nonlinear Parameter Estimation, New York: Academic Press.

    Google Scholar 

  • Bartlett, M. S. (1949). Some evolutionary stochastic processes. J. R. Stat. Soc. Ser. B B11, 211–229.

    MathSciNet  Google Scholar 

  • Carroll, C. J. and D. Ruppert (1988). Transformation and Weighting in Regression, New York: Chapman and Hall.

    Google Scholar 

  • Chambers, J. M., W. S. Cleveland, B. Kleiner and P. A. Tukey (1983). Graphical Methods for Data Analysis, New York: Chapman and Hall.

    Google Scholar 

  • Chiang, C. L. (1980). An Introduction to Stochastic Processes and Their Applications, Huntington, NY: Robert E. Krieger Publishing.

    Google Scholar 

  • Davidian, M. and D. M. Giltinan (1995). Nonlinear Models for Repeated Measure Data, London: Chapman and Hall.

    Google Scholar 

  • Gauss, C. F. (1823). Theoria combinations observationum erroribus minimis obnoxiae. Pars prior, et Pars posterior. Comment. Societ. R. Sci. Gottingensis Recentiores 5, 33–62, 63–90.

    Google Scholar 

  • Guttorp, P. (1995). Stochastic Modeling of Scientific Data, London: Chapman and Hall.

    Google Scholar 

  • Hilborn, R. and M. Mangel (1997). The Ecological Detective: Confronting Models with Data, Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Judge, J., W. E. Griffiths, R. C. Hill and T.-C. Lee (1980). The Theory and Practice of Econometrics, New York: John Wiley.

    Google Scholar 

  • Knight, W. (1968). Asymptotic growth: an example of nonsense disguised as mathematics. J. Fisheries Res. Board Can. 25, 1303–1307.

    Google Scholar 

  • Nash, J. C. and M. Walker-Smith (1987). Nonlinear Parameter Estimation: An Integrated System in BASIC, New York: Marcel Dekker.

    Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992). Numerical Recipes in C: The Art of Scientific Computing, New York: Cambridge University Press.

    Google Scholar 

  • Ratkowsky, D. A. (1983). Nonlinear Regression Modeling: A Unified Practical Approach, New York: Marcel Dekker.

    Google Scholar 

  • Rawlings, J. O. (1988). Applied Regression Analysis: A Research Tool, Pacific Grove, CA: Wadsworth and Brooks.

    Google Scholar 

  • Renshaw, E. (1986). A survey of stepping-stone models in population dynamics. Adv. Appl. Probab. 18, 581–627.

    Article  MATH  MathSciNet  Google Scholar 

  • Ricciardi, L. M. (1986). Stochastic population theory: birth and death processes, in Mathematical Ecology: An Introduction, T. G. Hallam and S. A. Levin (Eds), Berlin: Springer-Verlag, pp. 155–190.

    Google Scholar 

  • Ruben, H. (1962). Some aspects of the emigration-immigration process. Ann. Math. Stat. 33, 119–129.

    MATH  MathSciNet  Google Scholar 

  • Seber, G. A. F. and C. J. Wild (1989). Nonlinear Regression, New York: John Wiley and Sons.

    Google Scholar 

  • Stevens, W. L. (1951). Asymptotic regression. Biometrics 7, 247–267.

    MathSciNet  Google Scholar 

  • Taylor, H. M. and S. Karlin (1984). An Introduction to Stochastic Modeling, Orlando, FL: Academic Press.

    Google Scholar 

  • Vonesh, E. F. and V. M. Chinchilli (1997). Linear and Nonlinear Models for the Analysis of Repeated Measurements, New York: Marcel Dekker.

    Google Scholar 

  • Wetherill, G. B. (1986). Regression Analysis with Applications, New York: Chapman and Hall.

    Google Scholar 

  • Whittle, P. (1967). Nonlinear migration processes. Bull. Int. Stat. Inst. 42, 642–647.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silverman, E., Kot, M. Rate estimation for a simple movement model. Bull. Math. Biol. 62, 351–375 (2000). https://doi.org/10.1006/bulm.1999.0159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0159

Keywords

Navigation