Skip to main content
Log in

Mathematical modelling of juxtacrine patterning

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Spatial pattern formation is one of the key issues in developmental biology. Some patterns arising in early development have a very small spatial scale and a natural explanation is that they arise by direct cell—cell signalling in epithelia. This necessitates the use of a spatially discrete model, in contrast to the continuum-based approach of the widely studied Turing and mechanochemical models. In this work, we consider the pattern-forming potential of a model for juxtacrine communication, in which signalling molecules anchored in the cell membrane bind to and activate receptors on the surface of immediately neighbouring cells. The key assumption is that ligand and receptor production are both up-regulated by binding. By linear analysis, we show that conditions for pattern formation are dependent on the feedback functions of the model. We investigate the form of the pattern: specifically, we look at how the range of unstable wavenumbers varies with the parameter regime and find an estimate for the wavenumber associated with the fastest growing mode. A previous juxtacrine model for Delta-Notch signalling studied by Collier et al. (1996, J. Theor. Biol. 183, 429–446) only gives rise to patterning with a length scale of one or two cells, consistent with the fine-grained patterns seen in a number of developmental processes. However, there is evidence of longer range patterns in early development of the fruit fly Drosophila. The analysis we carry out predicts that patterns longer than one or two cell lengths are possible with our positive feedback mechanism, and numerical simulations confirm this. Our work shows that juxtacrine signalling provides a novel and robust mechanism for the generation of spatial patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benson, D. L., J. A. Sherratt and P. K. Maini (1993). Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol. 55, 365–384.

    Article  MATH  Google Scholar 

  • Castets, V., E. Dulos, J. Boissonade and P. DeKepper (1990). Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956.

    Article  Google Scholar 

  • Clark, A. J. L., S. Ishii, N. Richert, G. T. Merlino and I. Pastan (1985). Epidermal growth factor regulates the expression of its own receptor. Proc. Natl. Acad. Sci. USA 82, 8374–8378.

    Article  Google Scholar 

  • Coffey, R. J., R. Derynck, J. N. Wilcox, T. S. Bringman, A. S. Goustin, H. L. Moses and M. R. Pittelkow (1987). Production and auto-induction of transforming growth factor-α in human keratinocytes. Nature 328, 817–820.

    Article  Google Scholar 

  • Collier, J. R., N. A. M. Monk, P. K. Maini and J. H. Lewis (1996). Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch intercellular signalling. J. Theor. Biol. 183, 429–446.

    Article  Google Scholar 

  • Dulos, E., J. Boissonade, J. J. Perraud, B. Rudovics and P. DeKepper (1996). Chemical morphogenesis—Turing patterns in an experimental chemical system. Acta Biophys. 44, 249–261.

    Google Scholar 

  • Freeman, M. (1997). Cell determination strategies in the Drosophila eye. Development 124, 261–270.

    Google Scholar 

  • Friedrich, M., I. Rambold and R. R. Melzer (1996). The early stages of ommatidial development in the flour beetle Tribolium castaneum. Dev. Genes Evol. 206, 136–146.

    Article  Google Scholar 

  • Kauffman, S. A., R. Shymko and K. Trabert (1978). Control of sequential compartment in Drosophila. Science 199, 259–270.

    Google Scholar 

  • Lewis, J. (1996). Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol. 6, 3–10.

    Article  MATH  Google Scholar 

  • Maini, P. K., K. J. Painter and H. N. P. Chau (1997). Spatial pattern formation in chemical and biological systems. J. Chem. Soc. Faraday Trans. 93, 3601–3610.

    Article  Google Scholar 

  • Martiel, J. L. and A. Goldbeter (1987). A model based on receptor desensitization for cyclic AMP signalling in Dictyostelium cells. Biophys. J. 52, 807–828.

    Article  Google Scholar 

  • Massagué, J. (1990). Transforming growth factor-α: a model for membrane-anchored growth factors. J. Biol. Chem. 265, 21393–21396.

    Google Scholar 

  • Massagué, J. and A. Pandiella (1993). Membrane-anchored growth factors. Ann. Rev. Biochem. 62, 515–541.

    Article  Google Scholar 

  • Monk, N. A. (1998). Restricted-range gradients and travelling fronts in a model of juxtacrine cell relay. Bull. Math. Biol. 60, 901–918.

    Article  MATH  Google Scholar 

  • Murray, J. D. (1993). Mathematical Biology, 2nd edn, Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Murray, J. D., G. F. Oster and A. K. Harris (1983). A mechanical model for mesenchymal morphogenesis. J. Math. Biol. 17, 125–129.

    Article  MATH  Google Scholar 

  • Murray, J. D., R. T. Tranquillo and P. K. Maini (1988). Mechanochemical models for generating biological pattern and form in development. Phys. Rep. 171, 59–84.

    Article  MathSciNet  Google Scholar 

  • Olsen, L., J. A. Sherratt and P. K. Maini (1995). A mechanochemical model for adult dermal wound contraction: on the permanence of the contracted tissue displacement profile. J. Theor. Biol. 177, 113–128.

    Article  Google Scholar 

  • Oster, G. F., J. D. Murray and P. K. Maini (1985). A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions. J. Embryol. Exp. Morphol. 89, 93–112.

    Google Scholar 

  • Owen, M. R. and J. A. Sherratt (1998). Mathematical modelling of juxtacrine cell signalling. Math. Biosci. 152, 125–150.

    Article  Google Scholar 

  • Owen, M. R., J. A. Sherratt and S. R. Myers (1999). How far can a juxtacrine signal travel? Proc. R. Soc. Lond. Ser. B 266, 579–585.

    Article  Google Scholar 

  • Reilly, K. M. and D. A. Melton (1996). The role of short-range and long-range signalling in mesoderm induction and patterning during Xenopus development. Sem. Cell Dev. Biol. 7, 77–85.

    Article  Google Scholar 

  • Serrano, N. and P. H. O’Farrell (1997). Limb morphogenesis: connections between patterning and growth. Curr. Biol. 7, R186–R195.

    Article  Google Scholar 

  • Skeath, J. B. and S. B. Carroll (1992). Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo. Development 114, 939–946.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. Ser. B 237, 37–72.

    Google Scholar 

  • Varea, C., J. L. Aragon and R. A. Barrio (1997). Confined Turing patterns in growing systems. Phys. Rev. E 56, 1250–1253.

    Article  Google Scholar 

  • Voroney, J. P., A. T. Lawniczak and R. Kapral (1996). Turing pattern formation in heterogeneous media. Physica D 99, 303–317.

    Article  MATH  Google Scholar 

  • Waters, C. M., K. C. Oberg, G. Carpenter and K. A. Overholser (1990). Rate constants for binding, dissociation, and internalization of EGF: Effect of receptor occupancy and ligand concentration. Biochem. 29, 3563–3569.

    Article  Google Scholar 

  • Zigmond, S. H., S. J. Sullivan and D. A. Lauffenburger (1982). Kinetic analysis of chemotactic peptide receptor modulation. J. Cell. Biol. 92, 34–43.

    Article  Google Scholar 

  • Zipursky, S. L. and G. M. Rubin (1994). Determination of neuronal cell fate: lessons from the R7 neuron of Drosophila. Ann. Rev. Neurosci. 17, 373–397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wearing, H.J., Owen, M.R. & Sherratt, J.A. Mathematical modelling of juxtacrine patterning. Bull. Math. Biol. 62, 293–320 (2000). https://doi.org/10.1006/bulm.1999.0152

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0152

Keywords

Navigation