Bulletin of Mathematical Biology

, Volume 61, Issue 6, pp 1187–1207 | Cite as

Controlling chaos in ecology: From deterministic to individual-based models

  • Ricard V. Solé
  • Javier G. P. Gamarra
  • Marta Ginovart
  • Daniel López


The possibility of chaos control in biological systems has been stimulated by recent advances in the study of heart and brain tissue dynamics. More recently, some authors have conjectured that such a method might be applied to population dynamics and even play a nontrivial evolutionary role in ecology. In this paper we explore this idea by means of both mathematical and individual-based simulation models. Because of the intrinsic noise linked to individual behavior, controlling a noisy system becomes more difficult but, as shown here, it is a feasible task allowed to be experimentally tested.


Chaotic Dynamic Strange Attractor Trend Ecol Chaotic Regime Unstable Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. C., W. M. Schaffer and D. Rosko (1993). Chaos reduces species extinction by amplifying local population noise. Nature 364, 229–232.CrossRefGoogle Scholar
  2. Astakhov, V. V., V. S. Ansihehenko and A. V. Shabunin (1995). Controlling spatiotemporal chaos in a chain of coupled logistic maps. IEEE Trans. Circuits Syst. 1 42, 352–357.CrossRefGoogle Scholar
  3. Bascompte, J. and R. V. Solé (1995). Rethinking complexity: modelling spatiotemporal dynamics in ecology. Trends Ecol. Evol. 10, 361–366.CrossRefGoogle Scholar
  4. Berryman, A. A. and J. A. Millstein (1989). Are ecological systems chaotic—and if not, why not? Trends Ecol. Evol. 4, 26–28.CrossRefGoogle Scholar
  5. Constantino, R. F., J. M. Cushing, B. Dennis and R. A. Desharnais (1995). Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375, 227–230.CrossRefGoogle Scholar
  6. Constantino, R. F., R. A. Desharnais, J. M. Cushing and B. Dennis (1997). Chaotic dynamics in an insect populations. Science 275, 389–391.CrossRefGoogle Scholar
  7. Dennis, B., R. A. Desharnais, J. M. Cushing and R. F. Constantino (1997). Transitions in population dynamics: equilibria to periodic cycles to aperiodic cycles. J. Anim. Ecol. 66, 704–729.Google Scholar
  8. Ditto, W. L., S. N. Rauseo and M. L. Spano (1990). Experimental control of chaos. Phys. Rev. Lett. 65, 3211–3214.CrossRefGoogle Scholar
  9. Ditto, W. L., M. L. Spano and J. F. Lindner (1995). Techniques for the control of chaos. Physica D 86, 198–211.CrossRefGoogle Scholar
  10. Doebeli, M. (1993). The evolutionary advantage of controlled chaos. Proc. R. Soc. Lond. B 254, 281–285.Google Scholar
  11. Doebeli, M. and G. D. Ruxton (1997). Controlling spatiotemporal chaos in metapopulations with long-range dispersal. Bull. Math. Biol. 59, 497–515.CrossRefGoogle Scholar
  12. Fox, R. F. and J. E. Keitzer (1990). Effect of molecular fluctuations on the description of chaos by microvariable equations. Phys. Rev. Lett. 64, 249–251.MathSciNetCrossRefGoogle Scholar
  13. Garfinkel, A., M. L. Spano, W. L. Ditto and J. N. Weiss (1992). Controlling cardiac chaos. Science 257, 1230–1235.Google Scholar
  14. Godfray, H. C. J. and S. P. Blythe (1990). Complex dynamics in multispecies communities. Phil. Trans. R. Soc. Lond. B 330, 221–233.Google Scholar
  15. Güemez, J. and M. A. Matías (1993). Control of chaos in uni-dimensional maps. Phys. Lett. A 181, 29–32.MathSciNetCrossRefGoogle Scholar
  16. Hassell, M. P., J. H. Lawton and R. M. May (1976). Patterns of dynamical behavior in single-species populations. J. Anim. Ecol. 45, 471–486.Google Scholar
  17. Hastings, A. (1993). Complex interactions between dispersal and dynamics, lessons from coupled logistic equations. Ecology 74, 1362–1372.CrossRefGoogle Scholar
  18. Hastings, A. and T. Powell (1991). Chaos in a three-species food chain. Ecology 72, 896–903.CrossRefGoogle Scholar
  19. Judson, O. P. (1994). The rise of the individual-based model in ecology. Trends Ecol. Evol. 9, 9–14.zbMATHCrossRefGoogle Scholar
  20. Kot, M., G. S. Sayler and T. W. Schultz (1992). Complex dynamics in a model microbial system. Bull. Math. Biol. 54, 619–648.CrossRefGoogle Scholar
  21. Lomnicki, A. (1989). Avoiding chaos. Trends Ecol. Evol. 4, 239.CrossRefGoogle Scholar
  22. May, R. M. (1974). Biological populations with nonoverlapping generations: stable points, stable cycles and chaos. Science 186, 645–647.Google Scholar
  23. May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature 261, 459–467.CrossRefGoogle Scholar
  24. May, R. M. and G. F. Oster (1976). Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573–599.CrossRefGoogle Scholar
  25. McCallum, H. I. (1992). Effects of inmigration on chaotic population dynamics. J. Theor. Biol. 154, 277–284.Google Scholar
  26. McCann, K., A. Hastings and G. R. Huxel (1998). Weak trophic interactions and the balance of nature. Nature 395, 794–798.CrossRefGoogle Scholar
  27. Nisbet, R., S. Blythe, B. Gurney, H. Metz and K. Stokes (1989). Avoiding chaos. Trends Ecol. Evol. 4, 238–239.CrossRefGoogle Scholar
  28. Ott, E., C. Grebogi and J. A. Yorke (1990). Controlling chaos. Phys. Rev. Lett. 64, 1196–1199.MathSciNetCrossRefGoogle Scholar
  29. Parthasarathy, S. and S. Sinha (1995). Controlling chaos in unidimensional maps using constant feedback. Phys. Rev. E 51, 6239–6242.CrossRefGoogle Scholar
  30. Peeters, P. and G. Nicolis (1992). Intrinsic fluctuations in chaotic dynamics. Physica A 188, 426–435.CrossRefGoogle Scholar
  31. Petrov, V., V. Gáspár, J. Masere and K. Showalter (1993). Controlling chaos in the Belousov—Zhabotinsky reaction. Nature 361, 240–243.CrossRefGoogle Scholar
  32. Pimm, S. L. (1991). The Balance of Nature?: Ecological Issues in the Conservation of Species and Communities, Chicago: University of Chicago Press.Google Scholar
  33. Ricker, W. E. (1954). Stock and recruitment. Fish. Res. Board. Canada 11, 559–623.Google Scholar
  34. Rinaldi, S., S. Muratori and Y. Kuznetsov (1993). Multiple attractors, catastrophes and chaos in seasonally perturbed predator—prey communities. Bull. Math. Biol. 55, 15–35.CrossRefGoogle Scholar
  35. Ringelberg, J. (1977). Properties of an aquatic microecosystem. II. Steady-state phenomena in the autotrophic subsystem. Helgoländer Meeresunters 30, 134–143.CrossRefGoogle Scholar
  36. Rohani, P. and D. J. D. Earn (1997). Chaos in a cup of flour. Trends Ecol. Evol. 12, 171.CrossRefGoogle Scholar
  37. Schaffer, W. M. (1984). Stretching and folding in lynx for returns: evidence for a strange attractor in nature? Am. Nat. 124, 798–820.CrossRefGoogle Scholar
  38. Schaffer, W. M. and M. Kot (1986). Chaos in ecological systems: the coals that Newcastle forgot. Trends Ecol. Evol. 1, 58–63.CrossRefGoogle Scholar
  39. Scheffer, M. (1991). Should we expect strange attractors behind plankton dynamics-and if so, should we bother? J. Plankton. Res. 13, 1291–1305.Google Scholar
  40. Schiff, S. J., K. Jerger, D. H. Duong, T. Chang, M. L. Spano and W. L. Ditto (1994). Controlling chaos in the brain. Nature 370, 615.CrossRefGoogle Scholar
  41. Solé, R. V. and J. G. P. Gamarra (1998). Chaos, dispersal and extinction in coupled ecosystems. J. Theor. Biol. 193, 539–541.CrossRefGoogle Scholar
  42. Solé, R. V. and L. Menéndez de la Prida (1995). Controlling chaos in discrete neural networks. Phys. Lett. A 199, 65–69.CrossRefGoogle Scholar
  43. Solé, R. V. and J. Valls (1992). Nonlinear phenomena and chaos in a Monte Carlo simulated microbial ecosystem. Bull. Math. Biol. 54, 939–955.CrossRefGoogle Scholar
  44. Stone, L. (1993). Period-doubling reversals and chaos in simple ecological models. Nature 365, 617–620.CrossRefGoogle Scholar
  45. Tilman, D. and D. Wedin (1991). Oscillations and chaos in the dynamics of a perennial grass. Nature 353, 653–655.CrossRefGoogle Scholar
  46. Wilson, W. G. (1998). Resolving discrepancies between deterministic population models and individual-based simulations. Am. Nat. 151, 116–134.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1999

Authors and Affiliations

  • Ricard V. Solé
    • 1
  • Javier G. P. Gamarra
    • 1
    • 2
  • Marta Ginovart
    • 3
  • Daniel López
    • 3
  1. 1.Complex Systems Research Group, Department of Physics FENUniversitat Politécnica de CatalunyaBarcelonaSpain
  2. 2.Forest Technology Center of Catalonia, Pujada del Seminari s/nSolsonaSpain
  3. 3.Escola Superior d’Agricultura de BarcelonaBarcelonaSpain

Personalised recommendations