Skip to main content

On estimating the probability of aperiodic outbursts of microbial populations from their fluctuating counts


The irregular sequence of counts of a microbial population, in the absence of observable corresponding environmental changes (e.g., temperature), can be regarded as reflecting the interplay of several unknown or random factors that favor or inhibit growth. Since these factors tend to balance one another, the fluctuations usually remain within bounds, and only by a coincidence—when all or most act in unison—does an ‘outburst’ occur. This situation can be represented mathematically as a sequence of independent random variables governed by a probability distribution. The concept was applied to reported microbial counts of ground meat and wastewater. It is found that the lognormal distribution could serve as a model, and that simulations from this model are indistinguishable from actual records. The parameters of the lognormal (or other) distribution can then be used to estimate the probability of a population outburst, i.e., an increase above a given threshold. Direct estimation of the outburst probability based on frequency of occurrence is also possible, but in some situations requires an impractically large number of observations. We compare the efficiency of these two methods of estimation. Such methods enable translation of irregular records of microbial counts into actual probabilities of an outburst of a given magnitude. Thus, if the environment remains ’stable’ or in dynamic equilibrium, the fluctuations should not be regarded merely as noise, but as a source of information and an indicator of potential population outbursts even where obvious signs do not exist.

This is a preview of subscription content, access via your institution.


  • Agresti, A. and B. A. Coull (1998). Approximate is better than ‘exact’ for interval estimation of binomial proportions. Am. Stat. 52, 119–126.

    Article  MathSciNet  Google Scholar 

  • Bartlett, M. S. (1960). Stochastic Population Models in Ecology and Epidemiology, Chapman and Hall.

  • Brown, D. and R. Rothery (1993). Models in Biology—Mathematics, Statistics and Computing, John Wiley.

  • Hogg, R. V. and E. A. Tannis (1993). Probablity and Statistical Inference, Macmillan.

  • Koenraad, P. M. F. J., W. C. Hzeleger, T. van der Laan, R. R. Beumer and F. M. Rombouts (1994). Survey of Campylobacter spp. in sewage plants in the Netherlands. Food Microbiol. 11, 65–73.

    Article  Google Scholar 

  • Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data, Wiley.

  • Murray, J. D. (1989). Mathematical Biology, Springer-Verlag.

  • Nisbet, R. M. and W. S. C. Gurney (1982). Modeling Fluctuating Populations, Wiley.

  • Peleg, M., M. D. Normand and R. Tesch (1997). Simulation of fluctuating populations of micro and macroorganisms with models having a normal variate term. J. Sci. Food Agr. 73, 17–20.

    Article  Google Scholar 

  • Royama, T. (1992). Analytical Population Dynamics, Chapman and Hall.

  • Ruelle, D. (1989). Chaotic Evolution and Strange Attractors, Cambridge: Cambridge University Press.

    Google Scholar 

  • Ruelle, D. (1991). Chance and Chaos, Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Ruelle, D. (1992). Deterministic chaos: the science and the fiction. Proc. R. Soc. Lond. A427, 241–247.

    MathSciNet  Google Scholar 

  • Schaffer, W. M. and G. L. Truty (1989). Chaos versus noise-driven dynamics, in Models in Population Biology, Vol. 20, The American Mathematical Society, pp. 77–96.

    MathSciNet  Google Scholar 

  • Wilks, S. (1962). Mathematical Statistics, Wiley.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Micha Peleg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peleg, M., Horowitz, J. On estimating the probability of aperiodic outbursts of microbial populations from their fluctuating counts. Bull. Math. Biol. 62, 17–35 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: