Advertisement

Bulletin of Mathematical Biology

, Volume 60, Issue 3, pp 477–503 | Cite as

Models for the length distributions of actin filaments: II. Polymerization and fragmentation by gelsolin acting together

  • G. Bard Ermentrout
  • Leah Edelstein-Keshet
Article

Abstract

In a previous paper, we studied elementary models for polymerization, depolymerization, and fragmentation of actin filaments (Edelstein-Keshet and Ermentrout, 1998, Bull. Math. Biol. 60, 449–475). When these processes act together, more complicated dynamics occur. We concentrate on a particular case study, using the actin-fragmenting protein gelsolin. A set of biological parameter values (drawn from the experimental literature) is used in computer simulations of the kinetics of gelsolin-mediated actin filament fragmentation.

Keywords

Actin Filament Barb Length Distribution Actin Monomer Fragmin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizawa, H., K. Sutoh and I. Yahara (1996). Overexpression of cofilin stimulates bundling of actin filaments, membrane ruffling, and cell movement in dictyostelium. J. Cell Biol. 132, 335–344.CrossRefGoogle Scholar
  2. Andrè, E., F. Lottspeich, M. Schleicher and A. Noegel (1988). Severin, gelsolin, and villin share a homologous sequence in regions presumed to contain F-actin severing domains. J. Biol. Chem. 263, 722–727.Google Scholar
  3. Vasconcellos, C., P. G. Allen, M. E. Wohl, J. M. Drazen, P. A. Janmey and T. P. Stossel (1994). Reduction in viscosity of cystic fibrosis sputum in vitro by gelsolin. Science 263, 969–971.Google Scholar
  4. Barron-Casella, E. A., M. A. Torres, S. W. Scherer, H. H. Q. Heng, L. C. Tsui and J. F. Casella (1995). Sequence analysis and chromosomal localization of human cap Z: Conserved residues within the actin-binding domain may link cap Z to gelsolin/severin and profilin protein families. J. Biol Chem. 270, 21472–21479.Google Scholar
  5. Biogen (1996). WWW Press Release, Cambridge, MA, Biogen Announces begining of phase I clinical trial of gelsolin as potential treatment for respiratory diseases. http://www.biogen.com/frame/company/index.html
  6. Coppin, C. M. and P. Leavis (1992). Quantitation of liquid-crystaline ordering in F-actin solutions. Biophys J. 63, 794–807.Google Scholar
  7. Del Castillo, A. R., S. Lemaire, L. Tchakarov, M. Jeyapragasan, J. Doucet, M. Vitale and J. Trifarö (1990). Chromaffin cell scinderin, a novel calcium-dependent actin filament-severing protein. EMBO J. 9, 43–52.Google Scholar
  8. Ditsch, A. and A. Wegner (1994). Nucleation of actin polymerization by gelsolin. Eur. J. Biochem. 224, 223–227.CrossRefGoogle Scholar
  9. Ditsch, A. and A. Wegner (1995). Two low-affinity Ca++ binding sites of gelsolin that regulate association with actin filaments. Eur. J. Biochem. 229, 512–516.CrossRefGoogle Scholar
  10. Doi, Y. and C. Frieden (1984). Actin polymerization: The effect of brevin on filament size and rate of polymerization. J. Biol. Chem. 259, 11868–11875.Google Scholar
  11. Edelstein-Keshet, L. and G. B. Ermentrout (1998). Models for the length distribution of actin filaments: I. Simple polymerization and fragmentation acting alone. Bull. Math. Biol. 60, 449–475.CrossRefzbMATHGoogle Scholar
  12. Fath, K. R. and D. R. Burgess (1995). Not actin alone. Curr. Biol. 5, 591–593CrossRefGoogle Scholar
  13. Furuhasi, K. and S. Hatano (1990). Control of actin filament length by phosphorylation of fragmin-actin complex. J. Cell Biol. 111, 1081–1087CrossRefGoogle Scholar
  14. Hartwig, J. H., D. Brown, D. A. Ausiello, T. P. Stossel and L. Orci (1990). Polarization of gelsolin and actin binding protein in kidney epithelial cells. J. Histochem. Cytochem. 38, 1145–1153.Google Scholar
  15. Hartwig, J. H. and D. J. Kwiatkowski (1991). Actin binding proteins. Curr. Opin. Cell Biol. 3, 87–97.CrossRefGoogle Scholar
  16. Hawkins, M., B. Pope, S. K. Maciver and A. G. Weeds (1993). Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments. Biochem. 32, 9985–9993.CrossRefGoogle Scholar
  17. Hayden, S. M., P. Miller, A. Brauweiler and J. R. Bamburg (1993). Analysis of the interactions of actin depolymerizing factor with G-and F-actin. Biochem. 32, 9994–10004.CrossRefGoogle Scholar
  18. Horn, R. A. and C. R. Johnson (1985). Matrix Analysis, Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  19. Howard, T., C. Chaponnier, H. Yin and T. Stossel (1990). Gelsolin-actin interaction and actin polymerization in human neutrophils. J. Cell Biol. 110, 1983–1991.CrossRefGoogle Scholar
  20. Janmey, P. A. and P. T. Matsudaira (1988). Functional comparison of vilin and gelsolin. J. Biol. Chem. 263, 16738–16743.Google Scholar
  21. Janmey, P. A., J. Peetermans, K. S. Zaner, T. P. Stossel and T. Tanaka (1986). Structure and mobility of actin filaments as measured by quasielectric light scattering, viscometry and electron microscopy. J. Biol. Chem. 261, 8357–8362.Google Scholar
  22. Kwiatkowski, D. J. (1988). Predominant induction of gelsolin and actin-binding protein during myeloid differentiation. J. Biol. Chem. 263, 13857–13862.Google Scholar
  23. Laham, L. E., J. A. Lamb, P. G. Allen and P. A. Janmey (1993). Selective binding of gelsolin to actin monomers containing ADP. J. Biol. Chem. 268, 14202–14207.Google Scholar
  24. Lauffenburger, D. A. and A. F. Horowitz (1996), Cell migration: a physically integrated molecular process. Cell 84, 359–369.CrossRefGoogle Scholar
  25. Lueck, A., J. D’Haese and H. Hinssen (1995). A gelsolin-related protein from lobster muscle: cloning, sequence analysis and expression. Biochem. J. 305, 767–775.Google Scholar
  26. Maciver, S. K., H. G. Zot and T. D. Pollard (1991). Characterization of actin filament severing by actophorin from Acanthamoeba castellanii. J. Cell Biol. 115, 1611–1620.CrossRefGoogle Scholar
  27. Madden, T. L. and J. Herzfeld (1994). Crowding-induced organization of cytoskeletal elements: II. dissolution of spontaneously formed filament bundles by capping proteins. J. Cell Biol. 126, 169–174.CrossRefGoogle Scholar
  28. McGough, A. (1997). Structural Studies of Gelsolin: Actin Interactions, Baylor College of Medicine, Houston, http://dali.bcm.tmc.edu/∼amy/Gelsolin.html Google Scholar
  29. Mitchison, T. J. and L. Cramer (1996). Actin-based cell motility and cell locomotion. Cell 84, 371–379.CrossRefGoogle Scholar
  30. Moon, A. and D. G. Drubin (1995). The ADF/cofilin proteins: Stimulus-responsive modulators of actin dynamics. Mol. Biol. Cell 6, 1423–1431.Google Scholar
  31. Redmond, T. and S. H. Zigmond (1993). Distribution of F-actin elongation sites in lysed polymorphonuclear leukocytes parallels the distribution of endogenous F-actin. Cell Motil. Cytoskel. 26, 1–18.CrossRefGoogle Scholar
  32. Schindl, M., E. Wallraff, B. Deubzer, W. Witke, G. Gerisch and E. Sackmann (1995). Cell-substrate interactions and locomotion of dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy. Biophys. J. 68, 1177–1190.CrossRefGoogle Scholar
  33. Schnuchel, A., R. Wiltscheck, L. Eichinger, M. Schleicher and T. A. Holak (1995). Structure of severin domain in solution. J. Mol. Biol. 247, 21–27.CrossRefGoogle Scholar
  34. Schoepper, B. and A. Wegner (1991). Rate constants and equilibrium constants for binding of actin to the 1:1 gelsolin-actin complex. Eur J. Biochem. 202, 1127–1131.CrossRefGoogle Scholar
  35. Schoepper, B. and A. Wegner (1992). Gelsolin binds to polymeric actin at a low rate. J. Biol. Chem. 267, 13924–13927.Google Scholar
  36. Selve, N. and A. Wegner (1986). Rate of treadmilling of actin filaments in vitro. J. Mol. Biol. 187, 627–631.CrossRefGoogle Scholar
  37. Selve, N. and A. Wegner (1987). pH-dependentrate of formation of the gelsolin-actin complex from gelsolin and monomeric actin. Eur. J. Biochem. 168, 111–115.CrossRefGoogle Scholar
  38. Stossel, T. P. (1994). Gelsolin: another potential therapy for CF Sputum. http://www.ai.mit.edu/people/mernst/cf/cfri
  39. Teubner, A., I. Sobek-Klocke, H. Hinssen and U. Eichenlaub-Ritter (1994). Distribution of gelsolin in mouse ovary. Cell Tissue Research 276, 535–544.Google Scholar
  40. Theriot, J. A. (1994). Actin filament dynamics in cell motility, in Actin: Biophysics, Biochemistry, and Cell Biology, J. E. Estes and P. J. Higgins (Eds), New York: Plenum Press, pp. 133–145.Google Scholar
  41. Vandekerckhove, J., G. Bauw, K. Vancompernolle, B. Honoré and J. Celis (1990). Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epithelial cells. J. Cell Biol. 111, 95–102CrossRefGoogle Scholar
  42. Weber, I., E. Walraff, R. Albrecht and G. Gerisch (1995). Motility and substratum adhesion of dictyostelium wild-type and cytoskeletal mutant cells: a study by RICM/bright-field double-view image analysis. J. Cell Sci. 108, 1519–1530.Google Scholar
  43. Yin, H. L., P. A. Janmey and M. Schleicher (1990). Severin is a gelsolin prototype. FEBS Lett. 264, 78–80.CrossRefGoogle Scholar
  44. Zigmond, S. H. (1993). Recent quantitative studies of actin filament turnover during cell locomotion. Cell Motil. Cytoskel. 25, 309–316.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1998

Authors and Affiliations

  • G. Bard Ermentrout
    • 1
  • Leah Edelstein-Keshet
    • 2
  1. 1.Department of MathematicsUniversity of PittsburghPittsburghUSA
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations