Advertisement

Bulletin of Mathematical Biology

, Volume 64, Issue 6, pp 1101–1116 | Cite as

Empathy leads to fairness

  • Karen M. Page
  • Martin A. Nowak
Article

Abstract

In the Ultimatum Game, two players are asked to split a prize. The first player, the proposer, makes an offer of how to split the prize. The second player, the responder, either accepts the offer, in which case the prize is split as agreed, or rejects it, in which case neither player receives anything. The rational strategy suggested by classical game theory is for the proposer to offer the smallest possible positive share and for the responder to accept. Humans do not play this way, however, and instead tend to offer 50% of the prize and to reject offers below 20%. Here we study the Ultimatum Game in an evolutionary context and show that empathy can lead to the evolution of fairness. Empathy means that individuals make offers which they themselves would be prepared to accept.

Keywords

Payoff Ultimatum Game Total Payoff Evolutionary Game Theory Adaptive Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bethwaite, J. and P. Tompkinson (1996). The ultimatum game and non-selfish utility functions. J. Econ. Psychol. 17, 259–271.CrossRefGoogle Scholar
  2. Binmore, K. (2001). How and why did fairness norms evolve? Proc. British Acad. 110, 149–170.Google Scholar
  3. Bolton, G. E. and A. Ockenfels (2000). A theory of equity, reciprocation and competition. Am. Econ. Rev. 90, 166–193.CrossRefGoogle Scholar
  4. Bolton, G. E. and R. Zwick (1995). Anonymity versus punishment in ultimatum bargaining. Game Econ. Behav. 10, 95–121.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Dieckmann, U. (1997). Can adaptive dynamics invade? Trends Ecol. Evol. 12, 128–131.CrossRefGoogle Scholar
  6. Fehr, E. and K. M. Schmidt (1999). A theory of fairness, competition and cooperation. Q. J. Econ. 114, 817–868.CrossRefzbMATHGoogle Scholar
  7. Geritz, S. A. H., J. A. J. Metz, E. Kisdi and G. Meszena (1997). Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 78, 2024–2027.CrossRefGoogle Scholar
  8. Geritz, S. A. H., E. Kisdi, G. Meszena and J. A. J. Metz (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–37.CrossRefGoogle Scholar
  9. Güth, W., R. Schmittberger and B. Schwarze (1982). An experimental analysis of ultimatum bargaining. J. Econ. Behavior Organization 3, 367–388.CrossRefGoogle Scholar
  10. Güth, W. and R. Tietze (1990). Ultimatum bargaining behavior, a survey and comparison of experimental results. J. Econ. Psychol. 11, 417–449.CrossRefGoogle Scholar
  11. Hofbauer, J. and K. Sigmund (1998). Evolutionary Games and Population Dynamics, Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  12. Kahnemann, D., J. L. Knetsch and R. Thaler (1986). Fairness and the assumptions of economics. J. Bus. 59, S258–S300.Google Scholar
  13. Kirchsteiger, G. (1994). The role of envy in ultimatum games. J. Econ. Behavior Organisation 25, 373–389.CrossRefGoogle Scholar
  14. Metz, J. A. J., S. A. H. Geritz, F. J. Meszena, F. J. A. Jacobs and J. S. van Heerwaardenm (1996). Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction, in Stochastic and Spatial Structures in Dynamical Systems, S. J. Van Strien and S. M. Verduyn Lunel (Eds), Amsterdam: North Holland, pp. 183–231.Google Scholar
  15. Nowak, M. A., K. M. Page and K. Sigmund (2000). Fairness versus reason in the Ultimatum Game. Science 289, 1773–1775.CrossRefGoogle Scholar
  16. Nowak, M. A. and K. Sigmund (1990). The evolution of reactive strategies in iterated games. Acta Applicandae Math. 20, 247–265.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Page, K. M. and M. A. Nowak (2001). A generalized adaptive dynamics framework can describe the evolutionary Ultimatum Game. J. Theor. Biol. 209, 173–179.CrossRefGoogle Scholar
  18. Page, K. M., M. A. Nowak and K. Sigmund (2000). The spatial ultimatum game. Proc. Roy. Soc. Lond. B 267, 2177–2182.CrossRefGoogle Scholar
  19. Preston, S. D. and F. B. M. de Waal (2001). Empathy: Its ultimate and proximate bases. Behav. Brain Sci. (in press).Google Scholar
  20. Roth, A. E., V. Prasknikar, M. Okuno-Fujiwara and S. Zamir (1991). Bargaining and market power in Jerusalem, Ljubljana, Pittsburgh and Tokyo. Am. Econ. Review 81, 1068–1095.Google Scholar
  21. Roth, A. E. (1995). Bargaining experiments, in Handbook of Experimental Economics, J. Kagel and A. E. Roth (Eds), Princeton University Press.Google Scholar
  22. Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica 50, 97–110.zbMATHMathSciNetGoogle Scholar
  23. Sigmund, K., E. Fehr and M. A. Nowak (2002). The economics of fair play. Sci. Am. 286, 82–87.CrossRefGoogle Scholar
  24. Thaler, R. H. (1988). The Ultimatum Game. J. Econ. Perspectives 2, 195–206.Google Scholar

Copyright information

© Society for Mathematical Biology 2002

Authors and Affiliations

  1. 1.Bioinformatics Unit, Department of Computer ScienceUniversity College LondonLondonUK
  2. 2.Institute for Advanced StudyPrincetonUSA

Personalised recommendations